# mypy: allow-untyped-defs import math import operator import sympy import torch from torch.utils._sympy.functions import ( _keep_float, FloatPow, FloatTrueDiv, FloorDiv, IntTrueDiv, Max, Min, Mod, OpaqueUnaryFn_exp, OpaqueUnaryFn_log, OpaqueUnaryFn_sqrt, PowByNatural, RoundDecimal, RoundToInt, ToFloat, TruncToInt, ) # The sympy interpretation of operators. It will also sometimes work with # plain int/float, but if you do certain operations you will get out a # sympy.Basic in the end. If you want the Python/FX traceable interpretation, # check PythonReferenceAnalysis. # NB: For magic methods this needs to use normal magic methods # so that test_magic_methods works class ReferenceAnalysis: @staticmethod def constant(c, dtype): return sympy.sympify(c) @staticmethod def or_(a, b): return a | b @staticmethod def and_(a, b): return a & b @staticmethod def eq(a, b): if isinstance(a, sympy.Expr) or isinstance(b, sympy.Expr): return sympy.Eq(a, b) return a == b @classmethod def ne(cls, a, b): return cls.not_(cls.eq(a, b)) @staticmethod def lt(a, b): return a < b @staticmethod def gt(a, b): return a > b @staticmethod def le(a, b): return a <= b @staticmethod def ge(a, b): return a >= b @staticmethod def not_(a): assert not isinstance(a, bool) return ~a @staticmethod def reciprocal(x): return FloatTrueDiv(1.0, x) @staticmethod def square(x): return PowByNatural(x, 2) @staticmethod def trunc_to_int(x, dtype): return TruncToInt(x) @staticmethod def ceil_to_int(x, dtype): return sympy.ceiling(x) @staticmethod def floor_to_int(x, dtype): return sympy.floor(x) @staticmethod def floor(x): return _keep_float(sympy.floor)(x) @staticmethod def ceil(x): return _keep_float(sympy.ceiling)(x) @staticmethod def to_dtype(x, dtype): if dtype == torch.float64: return ToFloat(x) raise NotImplementedError(f"to_dtype {dtype} NYI") @staticmethod def mod(x, y): return Mod(x, y) @staticmethod def abs(x): return abs(x) @staticmethod def neg(x): return -x @staticmethod def truediv(a, b): return FloatTrueDiv(a, b) @staticmethod def int_truediv(a, b): return IntTrueDiv(a, b) @staticmethod def floordiv(a, b): return FloorDiv(a, b) @staticmethod def truncdiv(a, b): raise NotImplementedError("TODO: truncdiv") @staticmethod def add(a, b): return _keep_float(operator.add)(a, b) @staticmethod def mul(a, b): return _keep_float(operator.mul)(a, b) @staticmethod def sub(a, b): return _keep_float(operator.sub)(a, b) @staticmethod def exp(x): return OpaqueUnaryFn_exp(x) @staticmethod def log(x): return OpaqueUnaryFn_log(x) @staticmethod def sqrt(x): return OpaqueUnaryFn_sqrt(x) @staticmethod def pow(a, b): return _keep_float(FloatPow)(a, b) @staticmethod def pow_by_natural(a, b): return PowByNatural(a, b) @staticmethod def minimum(a, b): return Min(a, b) @staticmethod def maximum(a, b): return Max(a, b) @staticmethod def round_to_int(a, dtype): return RoundToInt(a) @staticmethod def round_decimal(a, b): return RoundDecimal(a, b) # Unlike ReferenceAnalysis, does NOT sympyify, instead, works with plain # Python types and is FX traceable. Inheritance here is purely for code # sharing (TODO: considering splitting out a BaseReferenceAnalysis). class PythonReferenceAnalysis(ReferenceAnalysis): @staticmethod def constant(c, dtype): if dtype is torch.int64: return int(c) elif dtype is torch.double: return float(c) elif dtype is torch.bool: return bool(c) else: raise AssertionError(f"unrecognized dtype {dtype}") @staticmethod def not_(a): return torch.sym_not(a) @staticmethod def floordiv(a, b): return a // b @staticmethod def mod(x, y): return x % y @staticmethod def truncdiv(a, b): return a / b @staticmethod def to_dtype(x, dtype): if dtype == torch.float64: return torch.sym_float(x) raise NotImplementedError(f"to_dtype {dtype} NYI") @staticmethod def exp(x): raise AssertionError("exp is not valid shape sympy expr") @staticmethod def log(x): raise AssertionError("log is not valid shape sympy expr") @staticmethod def sqrt(x): return torch._sym_sqrt(x) # type: ignore[attr-defined] @staticmethod def minimum(a, b): return torch.sym_min(a, b) @staticmethod def maximum(a, b): return torch.sym_max(a, b) @staticmethod def floor_to_int(x, dtype): return math.floor(x) @staticmethod def ceil_to_int(x, dtype): return math.ceil(x) @staticmethod def floor(x): return float(math.floor(x)) @staticmethod def ceil(x): return float(math.ceil(x)) @staticmethod def truediv(a, b): return a / b @staticmethod def pow(a, b): return a**b @staticmethod def pow_by_natural(a, b): # Pray that safe_pow is not needed here lol. In particular, this # never participates in VR low/high ranges, so overflow should be # unlikely return a**b @staticmethod def round_to_int(a, dtype): return round(a) @staticmethod def round_decimal(a, b): return round(a, ndigits=b)