# mypy: allow-untyped-defs import functools import math import operator from typing import * # noqa: F403 import torch import torch.nn.functional as F from torch.fx.operator_schemas import normalize_function from torch.nested._internal.sdpa import jagged_scaled_dot_product_attention from .nested_tensor import NestedTensor __all__: List[Any] = [] JAGGED_OPS_TABLE: Dict[Any, Any] = {} # Simplifying assumption: we assume that the batch dim is always the left-most # dim, and the ragged dim is always the second dim. def _outer_to_inner_dim(ndim, dim): assert dim >= 0 and dim < ndim return 0 if dim < 2 else dim - 1 def _wrap_jagged_dim( ndim, dim, op_name, convert_to_inner_dim=True, allow_batch_dim=False ): from torch._prims_common import canonicalize_dims wrapped = canonicalize_dims(ndim, dim) if wrapped == 1: raise RuntimeError(f"{op_name}(): not supported for NestedTensor on dim=1") elif wrapped == 0 and not allow_batch_dim: raise RuntimeError(f"{op_name}(): not supported for NestedTensor on dim=0") return _outer_to_inner_dim(ndim, wrapped) if convert_to_inner_dim else wrapped def _wrap_jagged_dims(ndim, dims, op_name, ragged_idx=1): """ For NestedTensor operators, wraps dimensions to non-negative values, and returns metadata related to reduction dimension(s). """ from torch._prims_common import canonicalize_dims assert isinstance( dims, (tuple, list) ), f"_wrap_jagged_dims(): cannot iterate over dimensions of type {type(dims)}" wrapped_dims = [ canonicalize_dims(ndim, d) for d in dims ] # convert all indices to non-negative values operate_on_batch = 0 in wrapped_dims operate_on_ragged = ragged_idx in wrapped_dims operate_on_non_batch = any(d != 0 and d != ragged_idx for d in wrapped_dims) outer_to_inner_dim = tuple( _outer_to_inner_dim(ndim, d) for d in wrapped_dims if d != 0 ) return outer_to_inner_dim, operate_on_batch, operate_on_ragged, operate_on_non_batch def check_schema(schema_str: str, func, *args, **kwargs) -> None: named_arg_types = schema_str.split(", ") num_optional_args = [x.endswith("?") for x in named_arg_types].count(True) min_args = len(named_arg_types) - num_optional_args # special case: ellipses allows for any number of unchecked args at the end if named_arg_types[-1] == "...": named_arg_types = named_arg_types[:-1] else: if not (len(args) >= min_args and len(args) <= len(named_arg_types)): raise ValueError( f"NestedTensor {func.__name__}({schema_str}): expected at least {min_args} " f"arguments and at most {len(named_arg_types)} arguments, but got: " f"{len(args)} arguments" ) arg_type_check_fns = { "t": lambda x: isinstance(x, torch.Tensor) and not isinstance(x, NestedTensor), "jt": lambda x: isinstance(x, NestedTensor) and x._lengths is None and x._ragged_idx == 1, # ops with "jt" require contiguous JT only "jt_all": lambda x: isinstance( x, NestedTensor ), # ops with "jt_all" can accept all kinds of JT "any": lambda x: True, } for i, named_arg_type in enumerate(named_arg_types): name, arg_type = named_arg_type.split(": ") is_optional = arg_type.endswith("?") normalized_arg_type = arg_type[:-1] if is_optional else arg_type if normalized_arg_type not in arg_type_check_fns.keys(): raise AssertionError(f"Unknown arg type: {normalized_arg_type}") if i >= len(args): if not is_optional: raise ValueError( f"NestedTensor {func.__name__}({schema_str}) " f"missing required argument: {name}" ) continue _check_fn = arg_type_check_fns[normalized_arg_type] def check_fn(x, is_optional=is_optional): if is_optional: return x is None or _check_fn(x) else: return _check_fn(x) if not check_fn(args[i]): type_to_desc = { "t": "tensor", "t?": "optional tensor", "jt": "contiguous jagged layout NestedTensor", "jt_all": "jagged layout NestedTensor", "any": "", } raise ValueError( f"NestedTensor {func.__name__}({schema_str}): expected {name} to be a " f"{type_to_desc[arg_type]}" ) def check_ragged_dim_same( func, a: NestedTensor, a_name: str, b: NestedTensor, b_name: str ) -> None: # Calling into .shape here if a._size[a._ragged_idx] != b._size[b._ragged_idx]: raise RuntimeError( f"NestedTensor {func.__name__}: expected {a_name} and {b_name} to have the " "same exact offsets tensor." ) # returns True if the raggedness-relevant portions of the NT shape # match those of the specified size def raggedness_matches(nt, size): end = nt._ragged_idx + 1 nt_ragged = nt._size[:end] size_ragged = size[:end] return len(nt_ragged) == len(size_ragged) and ( all(ns == s or s == -1 for ns, s in zip(nt_ragged, size_ragged)) ) def squeeze_leading_ones(t): # Note: [ Squeezing leading ones ] # # Squeeze leading ones from t. # # We want: # (B, j0, ?, ?) + (1, 1, ?, ?) -> (B, j0, ?, ?) # (B, j0, ?, ?) + (1, 1, 1, ?, ?) -> (1, B, j0, ?, ?) (not yet supported) # # 1) Squeeze extra ones and grab values from NT # (1, 1, ?, ?) -> (?, ?) and (sum(*), ?, ?) -> (B, j0, ?, ?) # 2) Do dense broadcasting: # (sum(*), ?, ?) + (?, ?) -> (sum(*), ?, ?) # 3) Construct nested tensor # (sum(*), ?, ?) -> (B, j0, ?, ?) # # If unsqueezing on the 0th dim becomes supported, we would unsqueeze # at step (4) and we would need to update this function to record how # many ones we unsqueezed. while t.dim() > 0 and t.shape[0] == 1: t = t.squeeze(0) return t def register_func(tables, aten_ops, schema_str): if not isinstance(aten_ops, list): aten_ops = [aten_ops] if not isinstance(tables, list): tables = [tables] def wrapper(func): for aten_op in aten_ops: def get_inner(aten_op): def inner(*args, **kwargs): check_schema(schema_str, func, *args, **kwargs) return func(aten_op, *args, **kwargs) return inner for table in tables: table[aten_op] = get_inner(aten_op) return func return wrapper register_jagged_func = functools.partial(register_func, JAGGED_OPS_TABLE) def lookup_jagged(func, *args, **kwargs) -> Optional[Callable]: dispatch_func = JAGGED_OPS_TABLE.get(func, None) if dispatch_func is not None: return dispatch_func # Handle pointwise fallbacks if torch.Tag.pointwise in func.tags: # Assume there aren't additional tensors that aren't the "unary/binary" args num_tensor_args = sum(isinstance(x, torch.Tensor) for x in args) if num_tensor_args == 1: # Build up the check schema string. The first tensor arg is assumed to be # an NJT and other args are sent through as-is. schema_parts = [] for arg in func._schema.arguments: if isinstance(arg.type, torch.TensorType): schema_parts.append(f"{arg.name}: jt_all") break else: schema_parts.append(f"{arg.name}: any") schema_parts.append("...") check_schema_str = ", ".join(schema_parts) check_schema(check_schema_str, func, *args, **kwargs) return functools.partial(jagged_unary_pointwise, func) elif num_tensor_args == 2: check_schema("lhs: any, rhs: any, ...", func, *args, **kwargs) return functools.partial(jagged_binary_pointwise, func) return None def extract_kwargs(arg): kwargs = { "offsets": arg.offsets(), "_metadata_cache": arg._metadata_cache, "_ragged_idx": arg._ragged_idx, } return kwargs def jagged_unary_pointwise(func, *args, **kwargs): # assume if we get here that there is a single NJT input in the args njt = next(arg for arg in args if isinstance(arg, NestedTensor)) return NestedTensor( func(*(arg._values if arg is njt else arg for arg in args), **kwargs), **extract_kwargs(njt), ) def jagged_binary_pointwise(func, *args, **kwargs): a, b = args[0], args[1] assert isinstance(a, NestedTensor) or isinstance(b, NestedTensor) mismatch_error_msg = ( "cannot call binary pointwise function {} with inputs of shapes {} and {}" ) # a is NT, b is NT if isinstance(a, NestedTensor) and isinstance(b, NestedTensor): # ex: (B, j0, D) + (B, j0, D) # ex: (B, j0, D) + (B, j0, 1) if raggedness_matches(a, b._size): return NestedTensor( func(a._values, b._values, *args[2:], **kwargs), **extract_kwargs(a) ) raise RuntimeError(mismatch_error_msg.format(func.__name__, a._size, b._size)) # either a is NT or b is NT at this point a_is_nt = isinstance(a, NestedTensor) extracted_kwargs = extract_kwargs(a) if a_is_nt else extract_kwargs(b) # === Handle broadcasting across the batch / ragged dims === # Easy case: take advantage of pre-existing broadcasting logic # ex: (B, j0, ?, ?) + (?) -> (B, j0, ?, ?) # ex: (B, j0, ?, ?) + (?, ?) -> (B, j0, ?, ?) # ex: (B, j0, ?, ?) + (1, 1, ?, ?) -> (B, j0, ?, ?) nt, t = (a, b) if a_is_nt else (b, a) # See Note: [ Squeezing leading ones ] if t.dim() > nt.dim(): raise NotImplementedError("NYI: broadcasting NT with T with larger dim") t_squeezed = squeeze_leading_ones(t) if nt.dim() >= t_squeezed.dim() + 2: lhs, rhs = (nt._values, t_squeezed) if a_is_nt else (t_squeezed, nt._values) return NestedTensor(func(lhs, rhs, *args[2:], **kwargs), **extracted_kwargs) # Harder case: do manual broadcasting over unbound components # when NT dim == non-NT dim # ex: (B, j0, D_0, D_1) + (B, 1, D_0, D_1) -> (B, j0, D_0, D_1) if a.dim() == b.dim(): # ex: (B, j0, D_0, D_1) + (1, 1, D_0, D_1) -> should # be (B, j0, D_0, D_1) but not yet supported if a.shape[0] != b.shape[0]: raise RuntimeError( mismatch_error_msg.format(func.__name__, a.shape, b.shape) ) # need to use offsets to broadcast across ragged dim properly # NB: inefficient fallback here; Triton codegen can help this # TODO: Make this work with autograd outputs = [] for a_comp, b_comp in zip(a.unbind(), b.unbind()): outputs.append(func(a_comp, b_comp, *args[2:], **kwargs)) new_values = torch.cat(outputs, dim=0) return NestedTensor(new_values, **extracted_kwargs) # ex: (B, j0, D_0, D_1) + (A, B, 1, D_0, D_1) -> error because this breaks the invariant # that ragged dim is wrt left-most batch dim raise RuntimeError(mismatch_error_msg.format(func.__name__, a.shape, b.shape)) def jagged_torch_function(func, *args, **kwargs): # SDPA has special kernels that handle nested tensors. # Dispatch to the correct implementation here if func is torch._C._nn.scaled_dot_product_attention: return jagged_scaled_dot_product_attention(*args, **kwargs) if func.__name__ == "apply_": func(args[0]._values, *args[1:], **kwargs) return args[0] # Handle flatten() here because it's CompositeImplicit. if func.__name__ == "flatten": def _flatten_sig(input, start_dim=0, end_dim=-1): pass _, new_kwargs = normalize_function( # type: ignore[misc] _flatten_sig, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") # NB: stay in outer dim space because we're going to redispatch on a NT input start_dim = _wrap_jagged_dim( inp.dim(), new_kwargs["start_dim"], "flatten", convert_to_inner_dim=False ) end_dim = _wrap_jagged_dim( inp.dim(), new_kwargs["end_dim"], "flatten", convert_to_inner_dim=False ) if start_dim == end_dim: return inp product = functools.reduce(operator.mul, inp.shape[start_dim : end_dim + 1]) new_shape = (*inp.shape[:start_dim], product, *inp.shape[end_dim + 1 :]) return inp.reshape(*new_shape) raise NotImplementedError(func) @register_jagged_func( [ torch.ops.aten.is_non_overlapping_and_dense.default, torch.ops.aten.sym_size.default, torch.ops.aten.dim.default, torch.ops.aten.numel.default, torch.ops.aten.sym_numel.default, torch.ops.aten.sym_stride.default, torch.ops.aten.sym_storage_offset.default, ], "self: jt_all", ) def tensor_attr_supported_getter(func, *args, **kwargs): if func == torch.ops.aten.is_non_overlapping_and_dense.default: return False if func == torch.ops.aten.sym_size.default: return args[0]._size if func == torch.ops.aten.dim.default: return len(args[0]._size) if func in (torch.ops.aten.sym_numel.default, torch.ops.aten.numel.default): if args[0]._lengths is not None: return int(sum(args[0]._lengths) * math.prod(args[0]._size[2:])) return args[0]._values.numel() if func == torch.ops.aten.sym_stride.default: return args[0]._strides if func == torch.ops.aten.sym_storage_offset.default: return args[0]._values.storage_offset() @register_jagged_func(torch.ops.prim.layout.default, "self: jt_all") def prim_layout_default(func, *args, **kwargs): return torch.jagged @register_jagged_func( [torch.ops.aten.size.default], "self: jt_all", ) def tensor_attr_unsupported_getter(func, *args, **kwargs): if func == torch.ops.aten.size.default: raise RuntimeError( "NestedTensors does not support directly calling torch.ops.aten.size " "please use `nested_tensor.size()` instead." ) @register_jagged_func(torch.ops.aten.is_contiguous.default, "self: jt_all") def is_contiguous_general(func, *args, **kwargs): from torch._prims_common import is_contiguous_for_memory_format _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") # If created from narrow() check for lengths if inp.lengths() is not None: return False new_kwargs["memory_format"] = new_kwargs.get( "memory_format", torch.contiguous_format ) if new_kwargs["memory_format"] == torch.preserve_format: return True return is_contiguous_for_memory_format(inp._values, **new_kwargs) register_jagged_func( torch.ops.aten.is_contiguous.memory_format, "self: jt_all, memory_format: any?" )(is_contiguous_general) @register_jagged_func( torch.ops.aten.clone.default, "input: jt_all, memory_format: any?" ) def clone_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") new_meta = extract_kwargs(inp) if inp._lengths is not None: if new_kwargs["memory_format"] == torch.contiguous_format: # need to copy to remove "holes" non-contiguity / lengths metadata # TODO: write a kernel for this from .nested_tensor import jagged_from_list # TODO: We probably want the output to have the same ragged structure / nested int. assert ( inp._ragged_idx == 1 ), "NJT with ragged_idx != 1 not supported for contiguous clone" contig, _ = jagged_from_list(inp.unbind(), offsets=None) return contig else: # need to preserve any lengths metadata present new_meta["lengths"] = inp._lengths return NestedTensor(func(inp._values, **new_kwargs), **new_meta) @register_jagged_func(torch.ops.aten.linear.default, "input: jt, weight: t, bias: t?") def linear_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp)) @register_jagged_func( torch.ops.aten.linear_backward.default, "self: jt, grad_output: jt, weight: t, output_mask: any", ) def linear_backward_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") grad_output = new_kwargs.pop("grad_output") weight = new_kwargs.pop("weight") check_ragged_dim_same(func, inp, "self", grad_output, "grad_output") ds = NestedTensor( torch.matmul(grad_output._values, weight), **extract_kwargs(grad_output) ) dw = torch.matmul(grad_output._values.transpose(-2, -1), inp._values) db = None # NYI: gradient for bias, need to reduce over ragged dim return (ds, dw, db) @register_jagged_func(torch.ops.aten.to.dtype, "input: jt_all, dtype: any") def to_dtype(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp)) @register_jagged_func(torch.ops.aten._to_copy.default, "self: jt_all") def to_copy_default(func, *args, **kwargs): from .nested_tensor import _tensor_symint_registry _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") # don't change layout new_kwargs.pop("layout") new_values = func(inp._values, **new_kwargs) new_offsets = inp._offsets.to(device=new_values.device) from torch._subclasses.fake_tensor import FakeTensor from torch._subclasses.functional_tensor import ( FunctionalTensor, mb_unwrap_functional_tensor, ) if isinstance(new_offsets, (FakeTensor, FunctionalTensor)): # Temporary hack until we have the union find tgt = mb_unwrap_functional_tensor(new_offsets) src = mb_unwrap_functional_tensor(inp._offsets) tgt.nested_int_memo = src.nested_int_memo else: _tensor_symint_registry[new_offsets] = _tensor_symint_registry[inp._offsets] inp_kwargs = extract_kwargs(inp) inp_kwargs["offsets"] = new_offsets return NestedTensor(new_values, **inp_kwargs) @register_jagged_func( torch.ops.aten.copy_.default, "self: jt_all, src: jt_all, non_blocking: any?" ) def copy_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") src = new_kwargs.pop("src") if inp._size != src._size: raise RuntimeError( "copy_ only supports Nested Tensors that have same size and the exact same offset tensor." ) inp.values().copy_(src.values()) return inp register_jagged_func(torch.ops.aten.detach.default, "self: jt_all")( jagged_unary_pointwise ) @register_jagged_func( [ torch.ops.aten.empty_like.default, torch.ops.aten.ones_like.default, torch.ops.aten.zeros_like.default, torch.ops.aten.randn_like.default, ], "self: jt_all", ) def like_factory_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") # Default layout is technically torch.strided but only jagged is supported here. # Rather than force users to specify the layout, assume jagged. # This should be set to strided for redispatching on values. new_kwargs["layout"] = torch.strided return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp)) @register_jagged_func(torch.ops.aten.zero_.default, "self: jt_all") def zero__default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") func(inp._values) return inp @register_jagged_func( torch.ops.aten._softmax.default, "self: jt_all, dim: any, half_to_float: any" ) def _softmax_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) if isinstance(new_kwargs["dim"], tuple): raise RuntimeError( "softmax(): not supported for dimensions of type 'tuple' for NestedTensor" ) inp = new_kwargs.pop("input") ( new_kwargs["dim"], reduce_on_batch, reduce_on_ragged, reduce_on_non_batch, ) = _wrap_jagged_dims( inp.dim(), (new_kwargs["dim"],), "softmax", inp._ragged_idx, ) if reduce_on_batch: raise RuntimeError( "softmax(): not supported when reducing across the batch dimension for NestedTensor" ) if reduce_on_ragged and inp._ragged_idx > 1: raise RuntimeError( "softmax(): not supported when reducing along the ragged dimension for ragged_idx > 1 for NestedTensor" ) if reduce_on_ragged and inp._lengths is not None: raise RuntimeError( "softmax(): not supported where lengths is not None " + "if reducing across the ragged dimension for NestedTensor" ) new_kwargs["dim"] = new_kwargs["dim"][ 0 ] # torch.softmax takes in the reduction dimension as an integer if reduce_on_ragged: padded_softmax_values = torch.nn.functional.softmax( torch.ops.aten._jagged_to_padded_dense_forward( inp._values.reshape( inp._values.shape[0], -1 ), # values are required to be 2D tensors for j2pd [inp._offsets], max_lengths=[inp._max_seqlen], # max length of ragged dimension padding_value=float("-inf"), # e^-inf = 0 ), dim=inp._ragged_idx, ) softmax_values = torch.ops.aten._padded_dense_to_jagged_forward( padded_softmax_values, [inp._offsets], total_L=inp._values.shape[ 0 ], # providing this parameter helps avoid a GPU/CPU sync ).reshape( -1, *inp._values.shape[1:] ) # expand softmax_values back to original shape (inp._values.shape) return NestedTensor(softmax_values, **extract_kwargs(inp)) return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp)) @register_jagged_func( torch.ops.aten._softmax_backward_data.default, "grad_output: jt, output: jt, dim: any, input_dtype: any", ) def _softmax_backward(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) grad_out = new_kwargs.pop("grad_output") output = new_kwargs.pop("output") return NestedTensor( func(grad_out._values, output._values, **new_kwargs), **extract_kwargs(grad_out) ) @register_jagged_func( torch.ops.aten.native_dropout.default, "self: jt, float: any, train: any?" ) def native_dropout_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") out1, out2 = func(inp._values, **new_kwargs) return ( NestedTensor(out1, **extract_kwargs(inp)), NestedTensor(out2, **extract_kwargs(inp)), ) @register_jagged_func( torch.ops.aten.native_dropout_backward.default, "grad_output: jt, mask: jt, scale: any", ) def native_dropout_backward_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) grad_output = new_kwargs.pop("grad_output") mask = new_kwargs.pop("mask") return NestedTensor( func(grad_output._values, mask._values, **new_kwargs), **extract_kwargs(grad_output), ) @register_jagged_func(torch.ops.aten.prod.dim_int, "self: jt, dim: any, keepdim: any?") def prod_dim_int(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") # TODO: Figure out how to handle this better # keep_dim is required to keep it in jagged format if not new_kwargs["keepdim"]: raise RuntimeError("prod(): keepdim=True must be set for NestedTensor") dim = new_kwargs["dim"] new_kwargs["dim"] = _wrap_jagged_dim(len(inp._size), dim, "prod") return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(args[0])) @register_jagged_func( torch.ops.aten.split.Tensor, "self: jt, split_size: any, dim: any" ) def split_tensor(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") new_kwargs["dim"] = _wrap_jagged_dim(inp.dim(), new_kwargs["dim"], "split") return tuple( NestedTensor(values=x, **extract_kwargs(inp)) for x in func(inp._values, **new_kwargs) ) @register_jagged_func( torch.ops.aten.split_with_sizes.default, "self: jt, split_sizes: any, dim: any" ) def split_with_sizes_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") new_kwargs["dim"] = _wrap_jagged_dim( inp.dim(), new_kwargs["dim"], "split_with_sizes" ) return [ NestedTensor(values=x, **extract_kwargs(inp)) for x in func(inp._values, **new_kwargs) ] @register_jagged_func( torch.ops.aten.narrow.default, "self: jt, dim: any, start: any, length: any" ) def narrow(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") dim = _wrap_jagged_dim(inp.dim(), new_kwargs["dim"], "narrow") values = func( inp._values, dim=dim, start=new_kwargs["start"], length=new_kwargs["length"], ) return NestedTensor(values, **extract_kwargs(inp)) @register_jagged_func(torch.ops.aten.chunk.default, "self: jt, chunks: any, dim: any?") def chunk_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") new_kwargs["dim"] = _wrap_jagged_dim( inp.dim(), new_kwargs["dim"], "chunk", allow_batch_dim=True ) if new_kwargs["dim"] == 0: chunks = new_kwargs["chunks"] dim0_size = inp._size[0] chunk_size = math.ceil(dim0_size / chunks) # get _offsets of the chunks lengths = inp._offsets.diff() chunked_lengths = lengths.chunk(chunks) chunked_offsets = [torch.cumsum(x, dim=0) for x in chunked_lengths] chunked_offsets = [F.pad(x, (1, 0), value=0) for x in chunked_offsets] # type: ignore[arg-type] nested_kwargs = [ {"offsets": per_offsets, "_ragged_idx": inp._ragged_idx} for per_offsets in chunked_offsets ] # get _values of the chunks split_sizes = [x.sum().item() for x in chunked_lengths] chunk_values = inp._values.split(split_sizes) return [ NestedTensor(values=chunk_values[i], **(nested_kwargs[i])) for i in range(0, chunk_size) ] else: return [ NestedTensor(values=x, **extract_kwargs(inp)) for x in func(inp._values, **new_kwargs) ] @register_jagged_func(torch.ops.aten.unbind.int, "self: jt_all, dim: any?") def unbind_int(func, *args, **kwargs): # Note that this specializes on the length of the offsets _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) dim = new_kwargs["dim"] if dim != 0: raise RuntimeError("unbind(): only supported for NestedTensor on dim=0") inp = new_kwargs.pop("input") values = inp.values() offsets = inp.offsets() lengths = inp.lengths() ragged_idx = inp._ragged_idx if lengths is None: return torch.split(values, offsets.diff().tolist(), dim=(ragged_idx - 1)) if ragged_idx <= 0: raise RuntimeError( "unbind(): nested tensor ragged_idx out of bounds (should be >= 1)" ) for i in range(lengths.shape[0]): if offsets[i] + lengths[i] > values.shape[ragged_idx - 1]: raise RuntimeError( "unbind(): nested tensor offsets and lengths do not match ragged_idx dimension" ) return [ torch.narrow(values, dim=(ragged_idx - 1), start=offsets[i], length=lengths[i]) for i in range(lengths.shape[0]) ] @register_jagged_func(torch.ops.aten.squeeze.dim, "self: jt, dim: any") def squeeze_dim(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") values = inp._values new_kwargs["dim"] = _wrap_jagged_dim(len(inp._size), new_kwargs["dim"], "squeeze") return NestedTensor(func(values, **new_kwargs), **extract_kwargs(inp)) @register_jagged_func(torch.ops.aten.unsqueeze.default, "self: jt, dim: any") def unsqueeze_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") values = inp._values # Account for collapsed jagged dim dim = new_kwargs["dim"] new_kwargs["dim"] = _wrap_jagged_dim(len(inp._size) + 1, dim, "unsqueeze") return NestedTensor(func(values, **new_kwargs), **extract_kwargs(inp)) @register_jagged_func(torch.ops.aten.cat.default, "tensors: any, dim: any") def cat_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) tensors = new_kwargs.pop("tensors") # Convert any non-nested to nested nested = [t for t in tensors if t.is_nested] assert len(nested) > 0 first = nested[0] tensors = [t if t.is_nested else t.expand_as(first) for t in tensors] # Account for collapsed jagged dim dim = new_kwargs["dim"] new_kwargs["dim"] = _wrap_jagged_dim(len(first.shape), dim, "cat") return NestedTensor( func([t._values for t in tensors], **new_kwargs), **extract_kwargs(tensors[0]) ) @register_jagged_func(torch.ops.aten.matmul.default, "self: jt, other: any") def matmul_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") other = new_kwargs.pop("other") if inp.is_nested and not other.is_nested: return NestedTensor( func(inp._values, other, **new_kwargs), **extract_kwargs(inp) ) elif inp.is_nested and other.is_nested: # BMM with equivalent ragged dims between the two inputs if inp.dim() > 3 and other.dim() > 3 and raggedness_matches(inp, other._size): return NestedTensor(func(inp._values, other._values), **extract_kwargs(inp)) raise RuntimeError( f"matmul(): not supported between inputs of shapes {inp._size} and {other.shape}" ) @register_jagged_func( torch.ops.aten.expand.default, "self: jt, size: any, implicit: any?" ) def expand_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") size = new_kwargs["size"] assert ("implicit" not in new_kwargs) or (not new_kwargs.pop("implicit")) if not raggedness_matches(inp, size): raise RuntimeError(f"expand(): cannot expand shape {inp._size} -> {size}") expand_arg = [-1, *size[2:]] return NestedTensor(func(inp._values, expand_arg), **extract_kwargs(inp)) @register_jagged_func(torch.ops.aten.expand_as.default, "self: t, other: jt") def expand_as_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") other = new_kwargs.pop("other") return NestedTensor(func(inp, other._values), **extract_kwargs(other)) @register_jagged_func(torch.ops.aten.where.self, "condition: jt, self: jt, other: jt") def where_self(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) condition = new_kwargs.pop("condition") inp = new_kwargs.pop("input") other = new_kwargs.pop("other") assert condition._size == other._size == inp._size return NestedTensor( func(condition._values, inp._values, other._values, **new_kwargs), **extract_kwargs(condition), ) @register_jagged_func(torch.ops.aten._pin_memory.default, "self: jt, device: any?") def _pin_memory_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp)) @register_jagged_func(torch.ops.aten.is_pinned.default, "self: jt, device: any?") def is_pinned_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") return func(inp._values, **new_kwargs) @register_jagged_func( torch.ops.aten.is_same_size.default, "self: jt_all, other: jt_all" ) def is_same_size_default(func, *args, **kwargs): return args[0]._size == args[1]._size @register_jagged_func( torch.ops.aten.sum.dim_IntList, "self: jt_all, dim: any?, keepdim: any?, dtype: any?", ) def sum_dim_IntList(func, *args, **kwargs): """ Performs a sum along the provided tensor dimension. Returns a dense tensor if the ragged dimension is reduced away, else returns a nested tensor. """ _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") ( new_kwargs["dim"], reduce_on_batch, reduce_on_ragged, reduce_on_non_batch, ) = _wrap_jagged_dims( inp.dim(), new_kwargs["dim"], "sum", inp._ragged_idx, ) if reduce_on_ragged and inp._lengths is not None: raise RuntimeError( "sum(): not supported where lengths is not None " + "if reducing across the ragged dimension for NestedTensor" ) if reduce_on_ragged: # raggedness reduced away --> return dense tensor if ( reduce_on_batch ): # reduction cases: (batch, ragged), (batch, ragged, non-batch), etc. out = func( inp._values, **new_kwargs ) # no need to read offsets --> apply sum directly on values else: if ( reduce_on_non_batch ): # invalid reduction cases: (ragged, non-batch), etc. raise RuntimeError( "sum(): not supported along a ragged and non-batch dimension for NestedTensor" ) # reduction cases: (ragged) values_ragged_dim_outer = inp._values.permute( inp._ragged_idx - 1, # outer dimension *range(0, inp._ragged_idx - 1), *range(inp._ragged_idx, inp.dim() - 1), ) # shift reduction dimension of values backward to outer dimension # _jagged_to_padded_dense_forward requires values to be a 2D tensor # with the ragged dimension as the 0th dimension padded = torch.ops.aten._jagged_to_padded_dense_forward( values_ragged_dim_outer.reshape(values_ragged_dim_outer.shape[0], -1), [inp._offsets], max_lengths=[inp._max_seqlen], ) padded_ragged_dim_original = padded.view( padded.shape[0], inp._max_seqlen, *values_ragged_dim_outer.shape[ 1: ], # expand non-batch dimensions of padded tensor ).permute( 0, *range(2, inp._ragged_idx + 1), 1, *range(inp._ragged_idx + 1, inp.dim()), ) # shift reduction dimension of padded tensor forward to original ragged dimension out = torch.sum( padded_ragged_dim_original, dim=inp._ragged_idx, ) # need to read offsets --> pad jagged dimension and apply sum if new_kwargs["keepdim"]: # TODO: Fix this; it's a bug. should be unsqueezing on ragged_idx out = out.unsqueeze(0) return out else: # raggedness preserved --> return nested tensor if ( reduce_on_batch ): # invalid reduction cases: (batch), (batch, non-batch), etc. raise RuntimeError( "sum(): not supported along the batch dimension but not the ragged dimension for NestedTensor" ) # reduction cases: (non-batch), (non-batch, non-batch), etc. return NestedTensor( func(inp._values, **new_kwargs), **extract_kwargs(inp) ) # apply sum directly on values @register_jagged_func( torch.ops.aten.transpose.int, "self: jt_all, dim0: any, dim1: any" ) def transpose_int(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) from torch._prims_common import canonicalize_dims inp = new_kwargs.pop("input") dim0, dim1 = canonicalize_dims(inp.dim(), (new_kwargs["dim0"], new_kwargs["dim1"])) if inp._lengths is not None: raise ValueError( "transpose(): not supported on jagged layout nested tensor with holes" ) # To support the SDPA API, inputs need to have the ragged idx transposed to dim 2 # instead of 1, although the internal Flash and mem-effn implementations will # use the inputs with raggedness in dim 1. if dim0 == inp._ragged_idx or dim1 == inp._ragged_idx: if dim0 == 0 or dim1 == 0: raise ValueError( "Transpose is not supported on the batch dimension for jagged NT" ) if dim0 == inp._ragged_idx: to_dim = dim1 else: to_dim = dim0 inp_kwargs = extract_kwargs(inp) inp_kwargs["_ragged_idx"] = to_dim return NestedTensor( inp.values().transpose( _outer_to_inner_dim(len(inp._size), dim0), _outer_to_inner_dim(len(inp._size), dim1), ), **inp_kwargs, ) new_kwargs["dim0"] = _wrap_jagged_dim(inp.dim(), new_kwargs["dim0"], "transpose") new_kwargs["dim1"] = _wrap_jagged_dim(inp.dim(), new_kwargs["dim1"], "transpose") return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp)) @register_jagged_func(torch.ops.aten.permute.default, "self: jt_all, dims: any") def permute_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") dims = new_kwargs.pop("dims") inp_kwargs = extract_kwargs(inp) inp_dim = len(inp._size) # The first two checks are the same as the checks in the normal permute implementation if inp_dim != len(dims): raise ValueError( f"permute(): number of dimensions in the tensor input ({inp_dim}) " + f"does not match the length of the desired ordering of dimensions ({len(dims)}).", ) from torch._prims_common import canonicalize_dims canonicalized_dims = canonicalize_dims(inp_dim, dims) if len(canonicalized_dims) != len(set(canonicalized_dims)): raise ValueError("permute(): duplicate dims are not allowed.") if inp._lengths is not None: raise ValueError( "permute(): not supported on jagged layout nested tensor with holes" ) if canonicalized_dims[0] != 0: raise ValueError( "Permute is not supported on the batch dimension for jagged NT" ) inp_kwargs["_ragged_idx"] = canonicalized_dims.index(inp._ragged_idx) inner_dims = [_outer_to_inner_dim(inp_dim, dim) for dim in canonicalized_dims[1:]] new_kwargs["dims"] = inner_dims return NestedTensor(func(inp._values, **new_kwargs), **inp_kwargs) @register_jagged_func( [torch.ops.aten.view.default, torch.ops.aten._unsafe_view.default], "self: jt_all, size: any", ) def view_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") size = new_kwargs.pop("size") if inp._ragged_idx != 1 and tuple(inp._size) != tuple(size): raise RuntimeError( f"view(): does not support ragged_idx != 1 except when inp._size == size. " f"inp._size is ({inp._size}) and size is ({size})." ) # Ensure specified size still includes batch and ragged dims if len(size) < 3 or not raggedness_matches(inp, size): raise RuntimeError(f"view(): cannot view shape {inp._size} as {size}") # outer size: the size of the NT, e.g. [3, j0, 10] # inner size: the size of the values, e.g. [8, 10] (e.g. for offsets = [0, 3, 5, 8]) # this function gets inner_size[inner_idx] for a given inner_idx. # # example: for outer size [a, b, c, j0, d, e, f] # assume that j0 is ragged, other are concrete integers # and ragged_idx=3 # inner size will be [b, c, inp._values.size(ragged_idx), d, e, f] # therefore: # inner_size[0] = outer_size[1] # inner_size[1] = outer_size[2] # inner_size[0] = inp._values.size(ragged_idx - 1) # inner_size[3] = outer_size[4] # inner_size[4] = outer_size[5] def get_inner_size(inner_idx): nonlocal inp, size if inner_idx == inp._ragged_idx - 1: return inp._values.size(inner_idx) else: return size[inner_idx + 1] inner_size = [get_inner_size(i) for i in range(len(size) - 1)] return NestedTensor(func(inp._values, inner_size), **extract_kwargs(inp)) @register_jagged_func( torch.ops.aten.native_layer_norm.default, "input: jt_all, normalized_shape: any, weight: any?, bias: any?, eps: any", ) def native_layer_norm_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") if inp.dim() <= 2: raise RuntimeError( "layer_norm(): not supported for NestedTensor objects with 2 or fewer dimensions" ) normalized_shape = new_kwargs["normalized_shape"] ragged_size = inp.shape[inp._ragged_idx] num_dims_not_normalized = inp.dim() - len(normalized_shape) if ( num_dims_not_normalized == 0 ): # error if trying to normalize over the batch dimension raise RuntimeError( "layer_norm(): not supported when normalizing over the batch dimension for NestedTensor" ) if ragged_size in normalized_shape and inp._lengths is not None: raise RuntimeError( "layer_norm(): not supported where lengths is not None if operating on the ragged dimension for NestedTensor" ) if ( ragged_size in normalized_shape ): # special handling for normalizing over the ragged dimension padded_input = torch.ops.aten._jagged_to_padded_dense_forward( inp._values.flatten( start_dim=inp._ragged_idx ), # _jagged_to_padded_dense_forward requires values to be a 2D tensor [inp._offsets], max_lengths=[inp._max_seqlen], # max length of ragged dimension ) padded_mask = torch.ops.aten._jagged_to_padded_dense_forward( torch.ones((inp._values.shape[0], 1), device=inp.device, dtype=inp.dtype), [inp._offsets], max_lengths=[inp._max_seqlen], # max length of ragged dimension ).expand( padded_input.shape ) # mask elements outside of the ragged dimension and expand to the same shape as padded input (3D dense tensor) ragged_lengths = ( inp._offsets.diff().unsqueeze(1).unsqueeze(1) * padded_input.shape[2] ) # ragged dim * inner dim, since we sum over dims (1, 2) (the layer on which we normalize) mean = ( torch.sum( padded_input, dim=(1, 2), keepdim=True, ) / ragged_lengths ) # a sum over (1, 2) ensures layer norm, whereas a sum over (1) would be an instance norm padded_normalized = ( padded_input - mean ) * padded_mask # mask elements outside of the ragged dimension size for correct variance calculation variance = ( torch.sum( torch.square(padded_normalized), dim=(1, 2), keepdim=True, ) / ragged_lengths ) # a sum over (1, 2) ensures layer norm, whereas a sum over (1) would be an instance norm std = torch.sqrt(variance + new_kwargs["eps"]) padded_layer_norm = padded_normalized / std jagged_layer_norm_values = torch.ops.aten._padded_dense_to_jagged_forward( padded_layer_norm, [inp._offsets], total_L=inp._values.shape[ 0 ], # providing this parameter helps avoid a GPU/CPU sync ).unflatten( -1, inp.shape[inp._ragged_idx + 1 :] ) # unflatten last dimension back into original nested tensor shape, e.g. (B, *, WH) --> (B, *, W, H) return ( NestedTensor(jagged_layer_norm_values, **extract_kwargs(inp)), mean, std, ) output, mean, std = func(inp._values, **new_kwargs) return (NestedTensor(output, **extract_kwargs(inp)), mean, std) @register_jagged_func( torch.ops.aten.native_layer_norm_backward.default, "grad_out: jt, input: jt, normalized_shape: any, mean: any, rstd: any, weight: any?, bias: any?, output_mask: any", ) def native_layer_norm_backward_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) grad_out = new_kwargs.pop("grad_out") inp = new_kwargs.pop("input") d_input, d_gamma, d_beta = func(grad_out._values, inp._values, **new_kwargs) if d_input is None: return (None, d_gamma, d_beta) return (NestedTensor(d_input, **extract_kwargs(inp)), d_gamma, d_beta) @register_jagged_func(torch.ops.aten.select.int, "self: jt, dim: any, index: any") def select_int(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") new_kwargs["dim"] = _wrap_jagged_dim( inp.dim(), new_kwargs["dim"], "select", allow_batch_dim=True ) # handle batch dim slicing via unbind() for now # TODO: make this more efficient if new_kwargs["dim"] == 0: return inp.unbind()[new_kwargs["index"]] return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp)) @register_jagged_func( torch.ops.aten.slice.Tensor, "self: jt, dim: any?, start: any?, end: any?, step: any?", ) def slice_tensor(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") new_kwargs["dim"] = _wrap_jagged_dim(inp.dim(), new_kwargs["dim"], "slice") return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp)) @register_jagged_func( torch.ops.aten.convolution.default, "input: jt, weight: t, bias: t?, stride: any, padding: any, " "dilation: any, transposed: any, output_padding: any, groups: any", ) def convolution_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp)) @register_jagged_func( torch.ops.aten.mean.dim, "self: jt_all, dim: any?, keepdim: any?, dtype: any?" ) def mean_dim(func, *args, **kwargs): """ Performs a mean along the provided tensor dimension. Returns a dense tensor if the ragged dimension is reduced away, else returns a nested tensor. """ _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) if len(new_kwargs["dim"]) > 1: raise RuntimeError( "mean(): not supported across multiple dimensions for NestedTensor" ) inp = new_kwargs.pop("input") ( new_kwargs["dim"], reduce_on_batch, reduce_on_ragged, reduce_on_non_batch, ) = _wrap_jagged_dims( inp.dim(), new_kwargs["dim"], "mean", inp._ragged_idx, ) if reduce_on_batch: raise RuntimeError( "mean(): not supported along the batch dimension but not the ragged dimension for NestedTensor" ) if reduce_on_ragged and inp._lengths is not None: raise RuntimeError( "mean(): not supported where lengths is not None " + "if reducing across the ragged dimension for NestedTensor" ) if not new_kwargs["keepdim"]: raise RuntimeError("mean(): not supported when keepdim=False for NestedTensor") if reduce_on_ragged: # raggedness reduced away torch_sum = torch.sum(inp, dim=inp._ragged_idx, keepdim=new_kwargs["keepdim"]) # for every non-batch dimension, # unsqueeze lengths into the same shape as the PyTorch sum, # as the extra dimensions must all be divided by the same length lengths = inp._offsets.diff() for _ in range(inp.dim() - 2): lengths = lengths.unsqueeze(-1) return torch_sum / lengths.broadcast_to(torch_sum.shape) return NestedTensor( func(inp._values, **new_kwargs), **extract_kwargs(inp) ) # raggedness preserved @register_jagged_func(torch.ops.aten.stack.default, "tensors: any, dim: any") def stack_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) # guaranteed this is non-empty if we got here tensors = new_kwargs.pop("tensors") for t in tensors: if not isinstance(t, NestedTensor): raise RuntimeError("stack(): expected all nested tensors inputs") if t.dim() != tensors[0].dim(): raise RuntimeError( "stack(): expected all nested tensors to have the same dim" ) if not raggedness_matches(t, tensors[0].shape): raise RuntimeError( "stack(): expected all nested tensors to have the same nested structure" ) new_kwargs["dim"] = _wrap_jagged_dim( tensors[0].dim() + 1, new_kwargs["dim"], "stack" ) return NestedTensor( func([t._values for t in tensors], **new_kwargs), **extract_kwargs(tensors[0]) ) @register_jagged_func( torch.ops.aten.embedding.default, "weight: t, indices: jt, padding_idx: any?, scale_grad_by_freq: any?, sparse: any?", ) def embedding_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) # guaranteed this is non-empty if we got here indices = new_kwargs.pop("indices") weight = new_kwargs.pop("weight") return NestedTensor( func(weight, indices._values, **new_kwargs), **extract_kwargs(indices) ) @register_jagged_func( [ torch.ops.aten.values.default, torch.ops.aten._nested_get_values.default, ], "self: jt_all", ) def values_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") # TODO: Handle inference mode properly. # See https://github.com/pytorch/pytorch/issues/112024#issuecomment-1779554292 return inp._values.detach() @register_jagged_func(torch.ops.aten.all.default, "self: jt_all") def all_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") return func(inp._values) @register_jagged_func( torch.ops.aten._nested_view_from_jagged.default, "values: t, offsets: t, dummy: jt_all, lengths: t?, ragged_idx: any?, min_seqlen: t?, max_seqlen: t?", ) def _nested_view_from_jagged_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) values, offsets, lengths = ( new_kwargs["input"], new_kwargs["offsets"], new_kwargs["lengths"], ) ragged_idx = new_kwargs["ragged_idx"] min_seqlen = new_kwargs["min_seqlen"] max_seqlen = new_kwargs["max_seqlen"] metadata_cache = {} if min_seqlen is not None: metadata_cache["min_seqlen"] = min_seqlen if max_seqlen is not None: metadata_cache["max_seqlen"] = max_seqlen return NestedTensor( values, offsets, lengths=lengths, _ragged_idx=ragged_idx, _metadata_cache=metadata_cache, ) @register_jagged_func(torch.ops.aten._nested_get_offsets.default, "self: jt_all") def _nested_get_offsets(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") return inp._offsets @register_jagged_func(torch.ops.aten._nested_get_lengths.default, "self: jt_all") def _nested_get_lengths(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") return inp._lengths @register_jagged_func(torch.ops.aten._nested_get_ragged_idx.default, "self: jt_all") def _nested_get_ragged_idx(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") return inp._ragged_idx @register_jagged_func(torch.ops.aten._nested_get_min_seqlen.default, "self: jt_all") def _nested_get_min_seqlen(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") return inp._metadata_cache.get("min_seqlen", None) @register_jagged_func(torch.ops.aten._nested_get_max_seqlen.default, "self: jt_all") def _nested_get_max_seqlen(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") return inp._metadata_cache.get("max_seqlen", None) # If a section of the Nested Tensor is fully masked out we still retain the section with a length of 0 @register_jagged_func(torch.ops.aten.masked_select.default, "self: jt, mask: any") def masked_select_default(func, *args, **kwargs): _, new_kwargs = normalize_function( # type: ignore[misc] func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) inp = new_kwargs.pop("input") mask = new_kwargs.pop("mask") if inp.ndim > 2: raise RuntimeError("masked_select only support 2-D selections currently") elif inp.shape != mask.shape: raise RuntimeError( f"Mask with shape {mask.shape} is not compatible with input's shape {inp.shape}" ) res_values = inp._values.masked_select(mask.values()) mask_cumsum = F.pad(mask.values().cumsum(dim=0), (1, 0)) # type: ignore[arg-type] args = extract_kwargs(inp) args["offsets"] = mask_cumsum[inp._offsets] return NestedTensor( values=res_values, **args, ) # Make the dummy available on the C++ side. @register_jagged_func(torch.ops.aten._nested_get_jagged_dummy.default, "self: any") def _nested_get_jagged_dummy(func, *args, **kwargs): from torch.nested._internal.nested_tensor import _nt_view_dummy return _nt_view_dummy() with torch.library._scoped_library("aten", "IMPL") as aten: aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "CPU") aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "CUDA") aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "Meta")