#pragma once /// Defines the Float8_e5m2 type (8-bit floating-point) including conversions /// to standard C types and basic arithmetic operations. Note that arithmetic /// operations are implemented by converting to floating point and /// performing the operation in float32. /// Binary configuration: /// s eeeee mm /// 1 sign bit /// 5 exponent bits /// 2 mantissa bits /// bias = 15 /// /// Implementation based on the paper https://arxiv.org/pdf/2209.05433.pdf /// and inspired by Half implementation from pytorch/c10/util/Half.h #include namespace c10 { namespace detail { /* * Convert a 8-bit floating-point number in fp8 E5M2 format, in bit * representation, to a 32-bit floating-point number in IEEE single-precision * format, in bit representation. * * @note The implementation doesn't use any floating-point operations. */ inline C10_HOST_DEVICE float fp8e5m2_to_fp32_value(uint8_t input) { /* * Extend the fp8 E5M2 number to 32 bits and shift to the * upper part of the 32-bit word: * +---+----+---+-----------------------------+ * | S |EEEEE|MM|0000 0000 0000 0000 0000 0000| * +---+----+---+-----------------------------+ * Bits 31 26-30 24-25 0-23 * * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 * - zero bits. */ uint16_t half_representation = input; half_representation <<= 8; return fp16_ieee_to_fp32_value(half_representation); } /* * Convert a 32-bit floating-point number in IEEE single-precision format to a * 8-bit floating-point number in fp8 E5M2 format, in bit representation. */ inline C10_HOST_DEVICE uint8_t fp8e5m2_from_fp32_value(float f) { /* * Binary representation of fp32 infinity * 0 11111111 00000000000000000000000 */ constexpr uint32_t fp32_inf = UINT32_C(255) << 23; /* * Binary representation of 65536.0f, which is the first value * not representable in fp8e5m2 range: * 0 11111 00 - fp8e5m2 * 0 10001111 00000000000000000000000 - fp32 */ constexpr uint32_t fp8_max = UINT32_C(143) << 23; /* * A mask for converting fp32 numbers lower than fp8e5m2 normal range * into denorm representation * magic number: ((127 - 15) + (23 - 2) + 1) */ constexpr uint32_t denorm_mask = UINT32_C(134) << 23; uint32_t f_bits = fp32_to_bits(f); uint8_t result = 0u; /* * Extract the sign of the input number into the high bit of the 32-bit word: * * +---+----------------------------------+ * | S |0000000 00000000 00000000 00000000| * +---+----------------------------------+ * Bits 31 0-31 */ const uint32_t sign = f_bits & UINT32_C(0x80000000); /* * Set sign bit to 0 */ f_bits ^= sign; if (f_bits >= fp8_max) { // NaN - all exponent and mantissa bits set to 1 result = f_bits > fp32_inf ? UINT8_C(0x7F) : UINT8_C(0x7C); } else { if (f_bits < (UINT32_C(113) << 23)) { // Input number is smaller than 2^(-14), which is the smallest // fp8e5m2 normal number f_bits = fp32_to_bits(fp32_from_bits(f_bits) + fp32_from_bits(denorm_mask)); result = static_cast(f_bits - denorm_mask); } else { // resulting mantissa is odd uint32_t mant_odd = (f_bits >> 21) & 1; // update exponent, rounding bias part 1 f_bits += ((uint32_t)(15 - 127) << 23) + 0xFFFFF; // rounding bias part 2 f_bits += mant_odd; // take the bits! result = static_cast(f_bits >> 21); } } result |= static_cast(sign >> 24); return result; } } // namespace detail struct alignas(1) Float8_e5m2 { uint8_t x; struct from_bits_t {}; C10_HOST_DEVICE static constexpr from_bits_t from_bits() { return from_bits_t(); } Float8_e5m2() = default; constexpr C10_HOST_DEVICE Float8_e5m2(uint8_t bits, from_bits_t) : x(bits) {} inline C10_HOST_DEVICE Float8_e5m2(float value); inline C10_HOST_DEVICE operator float() const; inline C10_HOST_DEVICE bool isnan() const; inline C10_HOST_DEVICE bool isinf() const; }; C10_API inline std::ostream& operator<<( std::ostream& out, const Float8_e5m2& value) { out << (float)value; return out; } } // namespace c10 #include // IWYU pragma: keep