#pragma once // @generated by torchgen/gen.py from Function.h #include #include #include #include #include #include #include #include #include #include #include #include #include namespace at { // aten::thnn_conv2d.out(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, *, Tensor(a!) out) -> Tensor(a!) inline at::Tensor & thnn_conv2d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const ::std::optional & bias={}, at::IntArrayRef stride=1, at::IntArrayRef padding=0) { return at::_ops::thnn_conv2d_out::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), out); } namespace symint { template ::value>> at::Tensor & thnn_conv2d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const ::std::optional & bias={}, at::IntArrayRef stride=1, at::IntArrayRef padding=0) { return at::_ops::thnn_conv2d_out::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), out); } } // aten::thnn_conv2d.out(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, *, Tensor(a!) out) -> Tensor(a!) inline at::Tensor & thnn_conv2d_outf(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const ::std::optional & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::Tensor & out) { return at::_ops::thnn_conv2d_out::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), out); } namespace symint { template ::value>> at::Tensor & thnn_conv2d_outf(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const ::std::optional & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::Tensor & out) { return at::_ops::thnn_conv2d_out::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), out); } } // aten::thnn_conv2d.out(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, *, Tensor(a!) out) -> Tensor(a!) inline at::Tensor & thnn_conv2d_symint_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const ::std::optional & bias={}, c10::SymIntArrayRef stride=c10::SymInt(1), c10::SymIntArrayRef padding=c10::SymInt(0)) { return at::_ops::thnn_conv2d_out::call(self, weight, kernel_size, bias, stride, padding, out); } namespace symint { template ::value>> at::Tensor & thnn_conv2d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const ::std::optional & bias={}, c10::SymIntArrayRef stride=c10::SymInt(1), c10::SymIntArrayRef padding=c10::SymInt(0)) { return at::_ops::thnn_conv2d_out::call(self, weight, kernel_size, bias, stride, padding, out); } } // aten::thnn_conv2d.out(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, *, Tensor(a!) out) -> Tensor(a!) inline at::Tensor & thnn_conv2d_symint_outf(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const ::std::optional & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, at::Tensor & out) { return at::_ops::thnn_conv2d_out::call(self, weight, kernel_size, bias, stride, padding, out); } namespace symint { template ::value>> at::Tensor & thnn_conv2d_outf(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const ::std::optional & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, at::Tensor & out) { return at::_ops::thnn_conv2d_out::call(self, weight, kernel_size, bias, stride, padding, out); } } // aten::thnn_conv2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0) -> Tensor inline at::Tensor thnn_conv2d(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const ::std::optional & bias={}, at::IntArrayRef stride=1, at::IntArrayRef padding=0) { return at::_ops::thnn_conv2d::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding)); } namespace symint { template ::value>> at::Tensor thnn_conv2d(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const ::std::optional & bias={}, at::IntArrayRef stride=1, at::IntArrayRef padding=0) { return at::_ops::thnn_conv2d::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding)); } } // aten::thnn_conv2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0) -> Tensor inline at::Tensor thnn_conv2d_symint(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const ::std::optional & bias={}, c10::SymIntArrayRef stride=c10::SymInt(1), c10::SymIntArrayRef padding=c10::SymInt(0)) { return at::_ops::thnn_conv2d::call(self, weight, kernel_size, bias, stride, padding); } namespace symint { template ::value>> at::Tensor thnn_conv2d(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const ::std::optional & bias={}, c10::SymIntArrayRef stride=c10::SymInt(1), c10::SymIntArrayRef padding=c10::SymInt(0)) { return at::_ops::thnn_conv2d::call(self, weight, kernel_size, bias, stride, padding); } } }