#pragma once #include #include #include namespace at::native { TORCH_API at::Tensor clone_preserve_strides(const at::Tensor& self); inline bool cat_should_skip_tensor(const Tensor& t) { return t.sym_numel() == 0 && t.dim() == 1; } // Check to see if the shape of tensors is compatible // for being concatenated along a given dimension. inline void check_cat_shape_except_dim(const Tensor & first, const Tensor & second, int64_t dimension, int64_t index) { int64_t first_dims = first.dim(); int64_t second_dims = second.dim(); TORCH_CHECK(first_dims == second_dims, "Tensors must have same number of dimensions: got ", first_dims, " and ", second_dims); for (const auto dim : c10::irange(first_dims)) { if (dim == dimension) { continue; } int64_t first_dim_size = first.sizes()[dim]; int64_t second_dim_size = second.sizes()[dim]; TORCH_CHECK(first_dim_size == second_dim_size, "Sizes of tensors must match except in dimension ", dimension, ". Expected size ", static_cast(first_dim_size), " but got size ", static_cast(second_dim_size), " for tensor number ", index, " in the list."); } } inline void check_cat_no_zero_dim(const MaterializedITensorListRef& tensors) { int64_t i = 0; for(const Tensor& t : tensors) { TORCH_CHECK(t.dim() > 0, "zero-dimensional tensor (at position ", i, ") cannot be concatenated"); i++; } } inline int64_t get_num_splits(const Tensor& self, int64_t split_size, int64_t dim) { TORCH_CHECK(self.dim() != 0, "split expects at least a 1-dimensional tensor"); TORCH_CHECK(split_size >= 0, "split expects split_size be non-negative, but got split_size=", split_size); int64_t dim_size = self.size(dim); TORCH_CHECK(split_size > 0 || dim_size == 0, "split_size can only be 0 if dimension size is 0, " "but got dimension size of ", dim_size); // if split_size is 0 and dimension size is 0, there is 1 split. int64_t num_splits = 1; if (split_size != 0) { // ensuring num_splits is at least 1 makes consistent the case where split_size > dim_size // (returns a single split). We might want to error here, but keep it for BC. num_splits = std::max((dim_size + split_size - 1) / split_size, 1); } return num_splits; } inline bool have_same_ndims(TensorList tensors) { auto ndim = tensors[0].dim(); for (const auto tensor_idx : c10::irange(tensors.size())) { if(tensors[tensor_idx].dim() != ndim) { return false; } } return true; } inline void leading_dimension_matches(TensorList tensors, int64_t dim) { auto tensor_zero_size = tensors[0].sizes(); std::vector leading_dim_sizes(tensor_zero_size.begin(), tensor_zero_size.begin() + dim); for (const auto i : c10::irange(tensors.size())) { at::Tensor tensor = tensors[i]; for(const auto j : c10::irange(dim)) { TORCH_CHECK( tensor.size(j) == leading_dim_sizes[j], "_chunk_cat expects same sizes of 0,...,dim-1 dimensions for all tensors" ); } } } inline int64_t preprocess_chunk_cat_inputs(TensorList tensors, int64_t dim, int64_t num_chunks) { TORCH_CHECK(num_chunks >= 1, "_chunk_cat expects positive num_chunks"); TORCH_CHECK(!tensors.empty(), "_chunk_cat expects a non-empty input tensor list"); auto expected_dtype = tensors[0].dtype(); auto expected_device = tensors[0].device(); for(const auto i : c10::irange(tensors.size())) { TORCH_CHECK(tensors[i].numel() > 0, "_chunk_cat expects non-empty tensor"); TORCH_CHECK(tensors[i].dtype() == expected_dtype, "_chunk_cat expects all input tensors with the same dtype"); TORCH_CHECK(tensors[i].device() == expected_device, "_chunk_cat expects all inputs tensors on the same device"); } if (have_same_ndims(tensors)) { dim = maybe_wrap_dim(dim, tensors[0].dim()); } else { TORCH_CHECK(dim >= 0, "_chunk_cat expects non-negative dim when input tensors have different ndims") for(const auto i : c10::irange(tensors.size())) { TORCH_CHECK(dim < tensors[i].ndimension(), "_chunk_cat expects dim < ndim for all input tensors"); } } leading_dimension_matches(tensors, dim); return dim; } } // namespace at::native