import os # noqa: C101 import sys from typing import Any, Callable, Dict, List, Optional, TYPE_CHECKING, Union import torch def is_fbcode() -> bool: return not hasattr(torch.version, "git_version") def fx_graph_remote_cache_default() -> Optional[bool]: if os.environ.get("TORCHINDUCTOR_FX_GRAPH_REMOTE_CACHE") == "1": return True if os.environ.get("TORCHINDUCTOR_FX_GRAPH_REMOTE_CACHE") == "0": return False return None def autotune_remote_cache_default() -> Optional[bool]: if os.environ.get("TORCHINDUCTOR_AUTOTUNE_REMOTE_CACHE") == "1": return True if os.environ.get("TORCHINDUCTOR_AUTOTUNE_REMOTE_CACHE") == "0": return False return None # Enable auto_functionalized_v2 (enabled by default) enable_auto_functionalized_v2 = ( os.environ.get("TORCHDYNAMO_AUTO_FUNCTIONALIZED_V2", "0") == "1" ) # add some debug printouts debug = False # Whether to disable a progress bar for autotuning disable_progress = True # Whether to enable printing the source code for each future verbose_progress = False # use fx aot graph codegen cache fx_graph_cache = ( os.environ.get("TORCHINDUCTOR_FX_GRAPH_CACHE", "0" if is_fbcode() else "1") == "1" ) # use remote fx aot graph codegen cache # False: Disables the cache # True: Enables the cache # None: Not set -- Off for OSS, JustKnobs based for internal fx_graph_remote_cache: Optional[bool] = fx_graph_remote_cache_default() # enable autotune local cache autotune_local_cache = True # enable autotune remote cache # False: Disables the cache # True: Enables the cache # None: Not set -- Off for OSS, JustKnobs based for internal autotune_remote_cache: Optional[bool] = autotune_remote_cache_default() # Force disabled all inductor level caching -- This will override any other caching flag force_disable_caches = os.environ.get("TORCHINDUCTOR_FORCE_DISABLE_CACHES") == "1" # sleep in inductor for testing sleep_sec_TESTING_ONLY: Optional[int] = None # The default layout constraint for custom operators. # This must be the name of one of the layout constraint tags # (that is, one of {"needs_fixed_stride_order", "flexible_layout"}), # If the custom op does not have a layout constraint tag already # then we assume the following applies. custom_op_default_layout_constraint = "flexible_layout" # use cpp wrapper instead of python wrapper cpp_wrapper = os.environ.get("TORCHINDUCTOR_CPP_WRAPPER", "0") == "1" # codegen cpp wrapper code in an ABI compatible mode abi_compatible = ( os.environ.get("TORCHINDUCTOR_ABI_COMPATIBLE", "1" if is_fbcode() else "0") == "1" ) c_shim_version = os.environ.get("TORCHINDUCTOR_C_SHIM_VERSION", "2") # dead code elimination dce = False # assume weight tensors are fixed size static_weight_shapes = True # put correctness assertions in generated code size_asserts = os.environ.get("TORCHINDUCTOR_SIZE_ASSERTS", "1") == "1" nan_asserts = os.environ.get("TORCHINDUCTOR_NAN_ASSERTS") == "1" # enable loop reordering based on input orders pick_loop_orders = True # reuse a kernel input as the output inplace_buffers = True # reuse a buffer for an unrelated purpose allow_buffer_reuse = True # Enable pooled allocations for non-output tensors memory_planning = os.environ.get("TORCHINDUCTOR_MEMORY_PLANNING", "0") == "1" # How to organize memory under memory_planning=True: # - "none": do not try to pool storage, just reuse # - "intermediates": all non-outputs share storage, outputs each get unique storage # - "outputs": two pools, one for intermediates (freed on return) and one for outputs # - "combined": a single pool for both intermediates and outputs memory_pool = os.environ.get("TORCHINDUCTOR_MEMORY_POOL", "intermediates") # codegen benchmark harness benchmark_harness = True # fuse pointwise into templates epilogue_fusion = True # do epilogue fusions before other fusions epilogue_fusion_first = False # enable pattern match+replace optimizations pattern_matcher = True # set to True to enable the back-to-back GEMM pass b2b_gemm_pass = False # register custom graph optimization pass hook. so far, pre/post passes are # only applied before/after pattern_matcher in post_grad_passes. # # def my_custom_pre_pass(graph: torch.fx.graph.Graph): # # my custom graph optimization pass # ... # # def my_custom_post_pass(graph: torch.fx.graph.Graph): # # my custom graph optimization pass # ... # # torch._inductor.config.post_grad_custom_pre_pass = my_custom_pre_pass # torch._inductor.config.post_grad_custom_post_pass = my_custom_post_pass post_grad_custom_pre_pass: Optional[Callable[[torch.fx.graph.Graph], None]] = None post_grad_custom_post_pass: Optional[Callable[[torch.fx.graph.Graph], None]] = None # Registers a custom joint graph pass. joint_custom_pre_pass: Optional[Callable[[torch.fx.Graph], None]] = None joint_custom_post_pass: Optional[Callable[[torch.fx.Graph], None]] = None # Registers a custom pregrad pass. Note that the pre-grad IR is 1. # non-functional, 2. non-normalized, and 3. prone to change. Ideally we should # use post-grad passes. pre_grad_custom_pass: Optional[Callable[[torch.fx.graph.Graph], None]] = None # Registers a custom pass to be run right before fusion in Inductor scheduler. # WARNING: Inductor scheduler IR is at prototype stage and subject to change, # hence custom IR passes built on top of it might break in the future. _pre_fusion_custom_pass: Optional[ Callable[ [List["torch._inductor.scheduler.BaseSchedulerNode"]], List["torch._inductor.scheduler.BaseSchedulerNode"], ] ] = None # Deprecated split_cat_fx_passes = True # Optimize conv-batchnorm if batchnorm is in eval mode. Slightly reduces numerical stability. efficient_conv_bn_eval_fx_passes = False # Enable predispatch aten IR for export is_predispatch = False # Deprecated group_fusion = False # Deprecated batch_fusion = True # Pre grad fusion and options in order, set to empty dict to disable fusion. # Call `torch._inductor.fx_passes.group_batch_fusion.list_group_batch_fusions()` to see available fusions. # batch fusion options: # batch_linear # batch_linear_lhs # batch_layernorm # batch_tanh # batch_relu # batch_sigmoid # split cat fusion options: # normalization_pass # remove_split_with_size_one_pass # merge_getitem_cat_pass # merge_stack_tahn_unbind # merge_splits_pass # mutate_cat_pass # split_cat_pass pre_grad_fusion_options: Dict[str, Dict[str, Any]] = { "batch_linear": {}, "batch_linear_lhs": {}, "batch_layernorm": {}, "batch_tanh": {}, "batch_relu": {}, "batch_sigmoid": {}, } # Post grad fusion and options, set to empty dict to disable fusion. # Call `torch._inductor.fx_passes.group_batch_fusion.list_group_batch_fusions(False)` to see available fusions. post_grad_fusion_options: Dict[str, Dict[str, Any]] = {} # enable reordering pass for improving memory locality reorder_for_locality = True # Scale down RBLOCK for better occupancy dynamic_scale_rblock = os.environ.get("TORCHINDUCTOR_DYNAMIC_SCALE_RBLOCK", "1") == "1" # this forces fusion for int_mm with mul. Needed when you want to avoid realizing the int32 # but the mul gets fused with other pointwise ops instead. force_fuse_int_mm_with_mul = False # for pattern torch.mm(a, b.to(dtype)) with cuda tensors, # enable torch._inductor.kernel.mm.tuned_mixed_mm fused kernel. # Autotune will compare perf with normal cast->then->mm option use_mixed_mm = True # enable runtime numeric check for pre/post grad fx passes # floating point provides limited accuracy (about 7 decimal digits for single precision # floating point numbers,about 16 decimal digits for double precision floating point numbers) # according to PyTorch documentation. # https://pytorch.org/docs/stable/notes/numerical_accuracy.html#batched-computations-or-slice-computations fx_passes_numeric_check: Dict[str, Any] = { "pre_grad": False, "precision": 1e-4, "num_iterations": 1, "requires_optimizer": True, } # mixed_mm_choice can be used to control the behaviour for pattern torch.mm(a, b.to(dtype)) with cuda tensors. # The fallback aten implementation is normal cast->then->mm option. # If mixed_mm_choice is "default": this flag will be ignored. # If mixed_mm_choice is "triton": # - Always use torch._inductor.kernel.mm.tuned_mixed_mm's fused kernel. # - Autotune will not compare with fallback. # If mixed_mm_choice is "aten": always use the fallback aten implementation. # If mixed_mm_choice is "heuristic": # - Enables the heuristic. # - If the heuristic decides to add a config, it will add the config as the first choice. # - If autotune is disabled, this config will always be chosen. # - If autotune is enabled, it will also compare with fallback aten implementation and fused kernel. # The use_mixed_mm flag will be ignored if mixed_mm_choice != "default". mixed_mm_choice = "heuristic" # enable reordering pass for increasing overlap between compute and communication reorder_for_compute_comm_overlap = False # passes (in execution order) for increasing overlap between compute and communication # for built-in passes, use string name; for user-defined passes, pass in the function handle # WARNING: Inductor scheduler IR is at prototype stage and subject to change, # hence custom IR passes built on top of it might break in the future. reorder_for_compute_comm_overlap_passes = [ "reorder_compute_for_overlap", "sink_waits", "raise_comms", ] # runtime estimation function for ops # for built-in estimation function, pass in "default"; for user-defined estimation function, pass in the function handle estimate_op_runtime = "default" # unit: GB/s, uni-directional P2P bandwidth per card # default value is NVLink intra_node_bw = 300 # unit: GB/s, uni-directional P2P bandwidth per node # default value is InfiniBand inter_node_bw = 25 # enable slow autotuning passes to select algorithms max_autotune = os.environ.get("TORCHINDUCTOR_MAX_AUTOTUNE") == "1" # enable slow autotuning passes to select pointwise/reductions algorithms max_autotune_pointwise = os.environ.get("TORCHINDUCTOR_MAX_AUTOTUNE_POINTWISE") == "1" # enable slow autotuning passes to select gemm algorithms max_autotune_gemm = os.environ.get("TORCHINDUCTOR_MAX_AUTOTUNE_GEMM") == "1" # force cublas and triton to use the same precision; cublas supports TF32 for matmul operations # when m, n, k are multiples of 16, 16, 8, whereas triton supports TF32 for matmul operations # for any combinations of m, n, k, regardless of their alignment. setting this flag will ensure # that triton does not use TF32 wherever cublas would not use TF32 force_same_precision = ( True if is_fbcode() else os.environ.get("TORCHINDUCTOR_FORCE_SAME_PRECISION") == "1" ) # Specify candidate backends for gemm autotune. # Possible choices are combinations of: ATen, Triton, CUTLASS, CK, CPP. # ATen: default Pytorch ATen kernels. # Triton: Triton templates defined in torch inductor (AMD and NVidia GPUs). # CUTLASS: Cutlass templates and kernels (NVidia GPUs only). # CK: Composable Kernel templates and kernels (AMD Instinct GPUs only). # CPP: CPP templates and kernels for CPU. max_autotune_gemm_backends = os.environ.get( "TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_BACKENDS", "ATEN,TRITON,CPP" ).upper() # As above, specify candidate backends for conv autotune. # NB: in some cases for 1x1 convs we emit as matmul, # which will use the backends of `max_autotune_gemm_backends` max_autotune_conv_backends = os.environ.get( "TORCHINDUCTOR_MAX_AUTOTUNE_CONV_BACKENDS", "ATEN,TRITON" ).upper() # Specify the size of the search space for GEMM autotuning. # DEFAULT - balance between compile time overhead and performance # EXHAUSTIVE - maximize performance max_autotune_gemm_search_space = os.environ.get( "TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_SEARCH_SPACE", "DEFAULT" ).upper() # Whether we fall back to ATen or hard error when no matches are found during autotuning autotune_fallback_to_aten = ( os.environ.get("TORCHINDUCTOR_AUTOTUNE_FALLBACK_TO_ATEN", "1") == "1" ) # the value used as a fallback for the unbacked SymInts # that can appear in the input shapes (e.g., in autotuning) unbacked_symint_fallback = 8192 # DEPRECATED, DO NOT USE search_autotune_cache = False save_args = os.environ.get("TORCHINDUCTOR_SAVE_ARGS") == "1" # We will disable creating subprocess for autotuning if this is False autotune_in_subproc = os.environ.get("TORCHINDUCTOR_AUTOTUNE_IN_SUBPROC") == "1" # The following three timeouts are applicable if autotune_in_subproc is True: # Max time that a a valid benchmark result may take during autotuning max_autotune_subproc_result_timeout_seconds = 60.0 # Additional time we allow subprocesses to terminate gracefully after the timeout until we send a SIGTERM max_autotune_subproc_graceful_timeout_seconds = 1.0 # Additional time that we grant after a SIGTERM until we do a hard SIGKILL of subprocesses max_autotune_subproc_terminate_timeout_seconds = 2.0 # If autotuning in subprocess, whether to use multiple devices autotune_multi_device = os.environ.get("TORCHINDUCTOR_AUTOTUNE_MULTI_DEVICE") == "1" coordinate_descent_tuning = ( os.environ.get("TORCHINDUCTOR_COORDINATE_DESCENT_TUNING") == "1" ) coordinate_descent_check_all_directions = ( os.environ.get("TORCHINDUCTOR_COORDINATE_DESCENT_CHECK_ALL_DIRECTIONS") == "1" ) coordinate_descent_search_radius = int( os.environ.get("TORCHINDUCTOR_COORDINATE_DESCENT_RADIUS", "1") ) # AutoHeuristic is a framework that allows one to collect data from autotuning, use the data to learn a heuristic, and # generate the learned heursitic to code which is shipped with the compiler # Specify a list of comma separated optimizations to collect data for autoheuristic_collect = os.environ.get("TORCHINDUCTOR_AUTOHEURISTIC_COLLECT", "") # Specify a list of comma separated optimizations to use learned heuristics for autoheuristic_use = os.environ.get("TORCHINDUCTOR_AUTOHEURISTIC_USE", "mixed_mm") def run_autoheuristic(name: str) -> bool: return collect_autoheuristic(name) or use_autoheuristic(name) def collect_autoheuristic(name: str) -> bool: return name in torch._inductor.config.autoheuristic_collect.split(",") def use_autoheuristic(name: str) -> bool: return name in torch._inductor.config.autoheuristic_use.split(",") # If set to "DEFAULT", this will use the default log path specified in autoheuristic.py. # If set to another path, autoheuristic will instead log results to the given path. autoheuristic_log_path = os.environ.get( "TORCHINDUCTOR_AUTOHEURISTIC_LOG_PATH", "DEFAULT" ) # Disabled by default on ROCm, opt-in if model utilises NHWC convolutions layout_opt_default = "1" if not torch.version.hip else "0" layout_optimization = ( os.environ.get("TORCHINDUCTOR_LAYOUT_OPTIMIZATION", layout_opt_default) == "1" ) force_layout_optimization = os.environ.get("TORCHINDUCTOR_FORCE_LAYOUT_OPT", "0") == "1" # Whether to keep the output strides the same as eager after layout optimization. keep_output_stride = os.environ.get("TORCHINDUCTOR_KEEP_OUTPUT_STRIDE", "1") == "1" # Enabling this will let compiler print warning messages if a generated triton # kernel has inputs with mixed layouts. This is helpful for perf debugging # since kernel with mixed layout inputs may run much slower then one whose inputs # have uniform layouts. warn_mix_layout = os.environ.get("TORCHINDUCTOR_WARN_MIX_LAYOUT") == "1" # control store vs recompute heuristic # For fanouts, rematerialization can lead to exponential blowup. So, have # smaller threshold realize_reads_threshold = 4 realize_opcount_threshold = 30 # Threshold to prevent excessive accumulation of ops in one buffer during lowering realize_acc_reads_threshold = 8 # fallback to eager for random/dropout, this is slow but useful for debugging fallback_random = False # automatically create fallbacks when encountering an unhandled op implicit_fallbacks = True # fuse even in cases without common reads aggressive_fusion = False # For each fused kernel in the wrapper, comment with the nodes that get fused. # Useful for debugging fusion. debug_fusion = os.environ.get("TORCHINDUCTOR_DEBUG_FUSION") == "1" benchmark_fusion = os.environ.get("TORCHINDUCTOR_BENCHMARK_FUSION") == "1" enabled_metric_tables = os.environ.get("TORCHINDUCTOR_ENABLED_METRIC_TABLES", "") loop_ordering_after_fusion = ( os.environ.get("TORCHINDUCTOR_LOOP_ORDERING_AFTER_FUSION", "0") == "1" ) # For Triton Templates, select fastest of best template + epilogue vs best template + separate epilogue kernel benchmark_epilogue_fusion = ( os.environ.get("TORCHINDUCTOR_BENCHMARK_EPILOGUE_FUSION", "1") == "1" ) # Take how many of the top triton kernels to benchmark epilogue max_epilogue_benchmarked_choices = 1 # how many nodes to allow into a single fusion max_fusion_size = 64 # max number of inputs to generate cat as a pointwise op with masked laods max_pointwise_cat_inputs = 8 # replace small reductions with pointwise, disable with `= 1` unroll_reductions_threshold = 8 # Add extra comments to output code (causes compile cache misses) comment_origin = False # Convert 1x1 convs into matmuls conv_1x1_as_mm = False # Enable split reductions for better utilization when the dimension # being reduced over is large (by splitting it) split_reductions = True benchmark_kernel = os.environ.get("TORCHINDUCTOR_BENCHMARK_KERNEL", "0") == "1" # Enable constant and index_expr folding constant_and_index_propagation = True # we always add constants into graph.constants without # performing any constant-inlining optimization always_keep_tensor_constants = False # assert that indirect indexing does not read / write out of bounds assert_indirect_indexing = True # compute CSE bounds on variables that do not appear in the FX graph compute_all_bounds = False # enable the combo kernel that combines data-independent kernels (additional # to foreach kernels) into a single one (Experimental) combo_kernels = False # benchmark combo kernels and only allow ones with perf gains benchmark_combo_kernel = False # combo_kernel autotuning options: 0 - disable, 1 - enable except for foreach, # 2 - enable for all combo_kernels_autotune = 1 # Enable masking for combining kernels of mixed sizes: 0 - disable, 1 - enable # for all except for foreach, 2 - enable for all combo_kernel_allow_mixed_sizes = 1 # Enable dynamic shapes for foreach kernels combo_kernel_foreach_dynamic_shapes = False # constant folding on the joint graph joint_graph_constant_folding = True # Enable indirect_indexing asserts for decompositions and lowerings debug_index_asserts = False # Mode to emulate pytorch eager numerics for lower precision (fp16, bf16) # Pytorch eager computes bf16/fp16 by upcasting inputs to fp32 and downcasting after # For multiple, fused pointwise nodes, inductor will elide the intermediary upcasts and downcasts # Typically this should be closer to fp64 ref numerics. However, it can be useful for debugging # to emulate the eager numerics. emulate_precision_casts = False # warnings intended for PyTorch developers, disable for point releases is_nightly_or_source = "dev" in torch.__version__ or "git" in torch.__version__ developer_warnings = is_fbcode() or is_nightly_or_source # This pattern matches a special usage of scatter # 1. It's applied to a constant tensor # 2. The index tensor has size 1 in the scatter dimension # Such pattern generates a sparse matrix when the const tensor is all-zero. # We can lower this pattern to a pointwise kernel for more fusion opportunities # and saving memory footprint. optimize_scatter_upon_const_tensor = ( os.environ.get("TORCHINDUCTOR_OPTIMIZE_SCATTER_UPON_CONST_TENSOR", "1") == "1" ) # The multiprocessing start method to use for inductor workers in the codecache. # Can be "subprocess" or "fork". def decide_worker_start_method() -> str: start_method = os.environ.get( "TORCHINDUCTOR_WORKER_START", "fork" if is_fbcode() else "subprocess" ) assert start_method in ( "subprocess", "fork", ), f"Invalid start method: {start_method}" return start_method worker_start_method = decide_worker_start_method() # Flags to turn on all_reduce fusion. These 2 flags should be automaticaly turned # on by DDP and should not be set by the users. _fuse_ddp_communication = False _fuse_ddp_bucket_size = 25 # Flag to control which fusion passes to apply. Functions in the list will # be applied in order. There are two different different fusion passes # --"fuse_ddp_with_concat_op" and "fuse_ddp_with_coalesced_op". The default # one is "fuse_ddp_with_concat_op". Users can also change this to a customized # fusion function. # # The fusion currently does not support multiple DDP with different PG or # data type. This feature will be added in the future PRs. # # "schedule_comm_wait" is used to delay the wait ops to maximize comm/comp # overlapping. At this moment, this pass performs better than # reorder_for_compute_comm_overlap_passes but we will add the logic of # "schedule_comm_wait" in the future and remove the one here. _fuse_ddp_communication_passes: List[Union[Callable[..., None], str]] = [ "fuse_ddp_with_concat_op", "schedule_comm_wait", ] _micro_pipeline_tp: bool = False def decide_compile_threads() -> int: """ Here are the precedence to decide compile_threads 1. User can override it by TORCHINDUCTOR_COMPILE_THREADS. One may want to disable async compiling by setting this to 1 to make pdb happy. 2. Set to 1 if it's win32 platform 3. decide by the number of CPU cores """ if "TORCHINDUCTOR_COMPILE_THREADS" in os.environ: return int(os.environ["TORCHINDUCTOR_COMPILE_THREADS"]) elif sys.platform == "win32": return 1 elif is_fbcode(): return 1 else: cpu_count = ( len(os.sched_getaffinity(0)) if hasattr(os, "sched_getaffinity") else os.cpu_count() ) assert cpu_count return min(32, cpu_count) compile_threads = decide_compile_threads() # gemm autotuning global cache dir if is_fbcode(): try: from libfb.py import parutil if __package__: global_cache_dir = parutil.get_dir_path( os.path.join(__package__.replace(".", os.sep), "fb/cache") ) else: global_cache_dir = parutil.get_dir_path("fb/cache") except (ValueError, ModuleNotFoundError): global_cache_dir = None else: global_cache_dir = None # If kernel is fused, the name is generated from the origin node op names # for larger kernels limit this kernel_name_max_ops = 10 # Pad input tensors of matmul/bmm/addmm to leverage Tensor Cores in NVIDIA GPUs shape_padding = os.environ.get("TORCHINDUCTOR_SHAPE_PADDING", "1") == "1" # Control if we will do padding for pointwise/reductions comprehensive_padding = ( os.environ.get("TORCHINDUCTOR_COMPREHENSIVE_PADDING", "1") == "1" ) pad_channels_last = False # Disable comprehensive padding on the CPU disable_padding_cpu = True # The width of comprehensive padding, in bytes. # CUDA max memory transaction size is 128 bytes for a warp. padding_alignment_bytes = 128 # Threshold on the minimum stride that will be padded. # # Don't align a too small stride since that causes too much memory increase. # Pad too small stride may also cause perf loss. We may result in many tiny data blocks # with gaps in between. That causes less coalesced GPU memory access! # # Initially we pick 320 as the threshold since for alignement=16, # that results in at most 5% memory cost. # # But later on we raise the threshold to 1024 to avoid interfere with persistent reduction. # Let's say an inner reduction has a row size 513. Inductor will generate # persistent reduction code. # If we do padding, the strides are not contiguous any more. Inductor # uses a much smaller threshold for persistent reduction in this case and # generates potentially worse non-persistent reduction code. # # This change turns HF AllenaiLongformerBase amp training from a loss of 1.09x to a win of 1.05x. # (baseline: 71.09ms, padding w/o this change: 77.38ms, padding with this change: 67.77ms) padding_stride_threshold = 1024 # Enable padding outputs, even if they would not be padded in eager mode. # By default, we use the same strides as eager mode. pad_outputs = False # Whether to treat output of the backward graph as user visible. # For user visible outputs, inductor will make sure the stride matches with eager. bw_outputs_user_visible = True # Whether to always use shape padding if it is enabled and possible force_shape_pad: bool = False # Fx-based linear/matmul/bmm + permute/transpose vertical fusion permute_fusion = os.environ.get("TORCHINDUCTOR_PERMUTE_FUSION", "0") == "1" # Mark the wrapper call in PyTorch profiler profiler_mark_wrapper_call = False # Generate hook calls to torch._inductor.hooks.run_intermediate_hooks for # every intermediate for which we can correlate it with an intermediate # from the original FX graph generate_intermediate_hooks = False # Populate traceback field on IRNode; good for debugging why origin_node is # not populated, or finding out where an IRNode was constructed debug_ir_traceback = False # used for debugging to make sure config is properly set _raise_error_for_testing = False _profile_var = os.environ.get("TORCHINDUCTOR_PROFILE", "") profile_bandwidth = _profile_var != "" profile_bandwidth_regex = "" if _profile_var == "1" else _profile_var # Specify a file where we print out the profiling results. # None means we do not dump results to a file. profile_bandwidth_output = os.environ.get("TORCHINDUCTOR_PROFILE_OUTPUT", None) # Switch to do_bench_using_profiling to exclude the CPU overheads profile_bandwidth_with_do_bench_using_profiling = ( os.environ.get("TORCHINDUCTOR_PROFILE_WITH_DO_BENCH_USING_PROFILING") == "1" ) # TODO: remove later disable_cpp_codegen = False # Freezing will attempt to inline weights as constants in optimization # and run constant folding and other optimizations on them. After freezing, weights # can no longer be updated. freezing: bool = os.environ.get("TORCHINDUCTOR_FREEZING", "0") == "1" # Make freezing invalidate the eager Parameters of nn modules, to avoid memory overhead # of potentially keeping multiple copies of weights. freezing_discard_parameters: bool = False # Kill switch for allowing temporary tensors to be allocated as stack arrays. Tests # should be run with this flag both on and off to make sure we have coverage. allow_stack_allocation: bool = ( os.environ.get("TORCHINDUCTOR_STACK_ALLOCATION", "1" if is_fbcode() else "0") == "1" ) # Enables an alternate DSO interface (the "minimal ArrayRef interface") intended # to maximize performance for use cases that it can accommodate at the expense of # generality. In brief: # - inputs and outputs are ArrayRefTensor (note that strides are required, but the # tensor must be contiguous) # - constant handling is unchanged because it is not a per-inference-iteration bottleneck # # When the DSO is generated in this mode, the usual interface will also be supported, # but performance for that interface may be degraded. use_minimal_arrayref_interface: bool = False # decompose some memory bound matmul/bmm to mul decompose_mem_bound_mm: bool = False # assume_aligned_inputs means that we assume that inputs will be aligned; we generate # code using this assumption, and clone tensors before use if they aren't aligned. # In the common case, most inputs will be aligned. assume_aligned_inputs: bool = False # For the user-written Triton kernels compiled with the model, ignore the unsupported # arguments passed to the @triton.autotune in the user's code; this is unsafe, as # ignoring the unsupported args may lead to unexpected autotuning behavior: don't # set unless you know what you're doing. unsafe_ignore_unsupported_triton_autotune_args: bool = False # When True, we will check in scheduler.py _codegen that there are no "loops" # in the call stack; that is to say, the same frame multiple times. This # ensures that a cProfile trace to this frame will be a straight line without # any cycles. check_stack_no_cycles_TESTING_ONLY: bool = False # config specific to codegen/cpp.py class cpp: # set to torch.get_num_threads() threads = -1 # Do not generate loops when the condition doesn't hold, like: # for(long i0=4096; i0<4096; i0+=1) no_redundant_loops = ( os.environ.get("TORCHINDUCTOR_CPP_NO_REDUNDANT_LOOPS", "1") == "1" ) # Assume number of threads is dynamic, don't specialize thread number. # Kernels don't recompile on thread number changes with this flag on. # For single-threaded workload, turning it on would incur a slight # performance degradation. dynamic_threads = os.environ.get("TORCHINDUCTOR_CPP_DYNAMIC_THREADS", "0") == "1" simdlen: Optional[int] = None min_chunk_size = int(os.environ.get("TORCHINDUCTOR_CPP_MIN_CHUNK_SIZE", "4096")) cxx = ( None, # download gcc12 from conda-forge if conda is installed # "g++-12", # "g++-11", # "g++-10", # "clang++", os.environ.get("CXX", "clang++" if sys.platform == "darwin" else "g++"), # "g++.par", ) # Allow kernel performance profiling via PyTorch profiler enable_kernel_profile = ( os.environ.get("TORCHINDUCTOR_CPP_ENABLE_KERNEL_PROFILE", "0") == "1" ) # enable weight prepacking to get a better performance; may lead to large memory footprint weight_prepack = os.environ.get("TORCHINDUCTOR_CPP_WEIGHT_PREPACK", "1") == "1" # Inject a bug into our relu implementation; useful for testing our repro # extraction and minification functionality. # Valid values: "compile_error", "runtime_error", "accuracy" inject_relu_bug_TESTING_ONLY: Optional[str] = None inject_log1p_bug_TESTING_ONLY: Optional[str] = None # If None, autodetect whether or not AVX512/AVX2 can be used. Otherwise, # force usage as specified, without testing. vec_isa_ok: Optional[bool] = None # similar to config.triton.descriptive_names descriptive_names = "original_aten" # how many nodes to allow into a single horizontal fusion max_horizontal_fusion_size = int( os.environ.get("TORCHINDUCTOR_CPP_MAX_HORIZONTAL_FUSION_SIZE", "16") ) # Make scatter_reduce fallback when reduce is sum to avoid performance regression # using atomic_add. fallback_scatter_reduce_sum = ( os.environ.get("TORCHINDUCTOR_CPP_FALLBACK_SCATTER_REDUCE_SUM", "1") == "1" ) # Use funsafe-math-optimizations when compiling enable_unsafe_math_opt_flag = ( os.environ.get("TORCHINDUCTOR_CPP_ENABLE_UNSAFE_MATH_OPT_FLAG", "0") == "1" ) # Use ffp-contract when compiling enable_floating_point_contract_flag = ( os.environ.get("TORCHINDUCTOR_CPP_ENABLE_FLOATING_POINT_CONTRACT_FLAG", "0") == "1" ) # Disable the tiling select heuristic enable_tiling_heuristics = ( os.environ.get("TORCHINDUCTOR_CPP_ENABLE_TILING_HEURISTIC", "1") == "1" ) # Maximal allowed number of slices on K-dim for a GEMM kernel. This controls # the maximal parallelism of K-slicing. Since K-slicing requires extra thread # synchronization and buffers, the maximal number of slices is limited to # mitigate the sync overhead and memory usage. # When set to 0, the number of slices is unlimited. gemm_max_k_slices = int(os.environ.get("TORCHINDUCTOR_CPP_GEMM_MAX_K_SLICES", "1")) # For perf tuning and debugging purpose, configure the pre-defined cache blocking for # MxNxK dims respectively. The blockings are separated by comma and the unit is # the number of register blocks. # For example, "4,1,10" means 4 register blocks on M, 1 on N and 10 on K respectively. gemm_cache_blocking = os.environ.get("TORCHINDUCTOR_CPP_GEMM_CACHE_BLOCKING", None) # For perf tuning and debugging purpose, configure the pre-defined thread blocking factors for # MxNxK dims respectively. The factors are separated by comma and their product # should be the same as the total number of threads. # For example, if the total number of threads is 56, "7,4,2" means the work is # decomposed into 7x4x2 thread blocks along MxNxK of a GEMM. gemm_thread_factors = os.environ.get("TORCHINDUCTOR_CPP_GEMM_THREAD_FACTORS", None) # Whether to enable masked vectorization for the tail_loop. enable_loop_tail_vec = True # config specific to codegen/triton.py class triton: # Use cudagraphs on output code cudagraphs = os.environ.get("TORCHINDUCTOR_CUDAGRAPHS") == "1" # Use cudagraph trees for memory pooling if `cudagraphs` is True cudagraph_trees = True # Should we skip cudagraphing graphs with dynamic shape inputs # If False, we will re-record a graph for each unique set of shape inputs cudagraph_skip_dynamic_graphs = False # assertions not on the fast path, steady state slow_path_cudagraph_asserts = True # TODO - need to debug why this prevents cleanup cudagraph_trees_history_recording = False # Enable cudagraph support for mutated inputs from prior cudagraph pool cudagraph_support_input_mutation = False if is_fbcode() else True # Maximal number of allowed cudagraph re-record for a function and # a cudagraph node due to static input tensor address changes or # cudagraph managed tensor data pointer changed. # i.e., allow num_recording <= cudagraph_unexpected_rerecord_limit # note: we are conservative here and choose a large limit. cudagraph_unexpected_rerecord_limit = 128 # Warn loudly when the number of cudagraphs due to dynamic shape # exceeds this limit cudagraph_dynamic_shape_warn_limit: Optional[int] = 50 # synchronize after cudagraph invocation force_cudagraph_sync = False # always run cudagraphs in the eager warmup stage # instead of recording and executing cudagraphs force_cudagraphs_warmup = False # assertions on the fast path fast_path_cudagraph_asserts = False # skip warmup for cudagraph trees skip_cudagraph_warmup = False # Synchronize before and after every compiled graph. debug_sync_graph = False # Synchronize after every kernel launch, to help pinpoint bugs debug_sync_kernel = False # Always load full blocks (rather than broadcasting inside the block) dense_indexing = False # limit tiling dimensions max_tiles = 2 # Prefer higher dimensional tilings. This simplifies indexing expressions, making # it easier to identify block pointers. prefer_nd_tiling: bool = False # use triton.autotune for pointwise ops with complex layouts # this should only be disabled for debugging/testing autotune_pointwise = True # max autotune gemm with cublasLt autotune_cublasLt = True # Tune the generated Triton kernels at compile time instead of first time they run autotune_at_compile_time = False # should we stop a fusion to allow better tiling? tiling_prevents_pointwise_fusion = True tiling_prevents_reduction_fusion = True # should we give different names to kernels # Note: This is orthogonal to descriptive_names - this is deciding whether # our triton kernel names should all be `triton_` (to maximize caching) or # whether they should be unique. unique_kernel_names = os.environ.get("TORCHINDUCTOR_UNIQUE_KERNEL_NAMES") == "1" # should we put op names in kernel names # False: No special names (just triton__1, triton__2, etc.) # "torch": Maps to the fx op in the Dynamo graph (module name, method name, etc.) # "original_aten": Maps to the highest-level aten op (i.e. pre-decompositions) # "inductor_node": Maps to the node name in the FX graph passed to Inductor descriptive_names = "original_aten" # use alternate codegen for smaller reductions persistent_reductions = ( os.environ.get("TORCHINDUCTOR_PERSISTENT_REDUCTIONS", "1") == "1" ) # 0/False: disable # 1/True: enable, use tuning to pick between different subkernels # 2: enable, force using persistent reduction (for debugging) # 3: enable, force using non-persistent reduction (for debugging) multi_kernel = int(os.environ.get("TORCHINDUCTOR_MULTI_KERNEL", "0")) # hint to Triton when arguments are divisible by 16 divisible_by_16 = True # Minimum RBLOCK to be used for a TritonSplitScanKernel # NOTE: This also indirectly controls the size of workspace buffer required min_split_scan_rblock = 256 # Store the generated cubin files for cpp wrapper code to load store_cubin = False # the max number of spills we allow for the configs we benchmark. # Setting this to 0 means we skip a config if it spills even a single # register. # Setting it to a larger value allows a config spilling a small amount # of registers being benchmarked. # # NOTE: triton will always report >0 register spills for kernels using sin/cos. # (check this issue https://github.com/openai/triton/issues/1756 ) # So far we see a fixed 8 spilled registers for kernels using sin/cos. # Raise the threshold to 16 to be safe. # We should revisit this once we understand more of the source of register spills. spill_threshold: int = 16 # Generate code containing the newer tl.make_block_ptr() API for loads/store use_block_ptr = False # Inject a bug into our relu implementation; useful for testing our repro # extraction and minification functionality. # Valid values: "compile_error", "runtime_error", "accuracy" inject_relu_bug_TESTING_ONLY: Optional[str] = None # Whether to upcast float16 / bfloat16 to float32 in triton codegen (Experimental) codegen_upcast_to_fp32 = True class aot_inductor: # AOTInductor output path # If an absolute path is specified, the generated lib files will be stored under the directory; # If a relative path is specified, it will be used as a subdirectory under the default caching path; # If not specified, a temp directory will be created under the default caching path. # If the specified path contains something like "model.so", the sub-string will be used # to name the generated library. output_path = "" debug_compile = os.environ.get("AOT_INDUCTOR_DEBUG_COMPILE", "0") == "1" debug_dump_consts_bin: bool = ( os.environ.get("AOT_INDUCTOR_DEBUG_DUMP_CONSTS_BIN", "0") == "1" ) # option for debug printing/saving for intermediate tensor values for aot inductor # 0: disable debug dumping # 1: enable saving intermediate tensor values # 2: enable printing intermediate tensor values debug_intermediate_value_printer = os.environ.get( "AOT_INDUCTOR_DEBUG_INTERMEDIATE_VALUE_PRINTER", "0" ) # filtered nodes to be printed for debug values. Specify this option when debug_intermediate_value_printer is set to 2 filtered_kernel_names = os.environ.get( "AOT_INDUCTOR_FILTERED_KERNELS_TO_PRINT", None ) # Serialized tree spec for flattening inputs serialized_in_spec = "" # Serialized tree spec for flattening outputs serialized_out_spec = "" # flag to decide whether to create a submodule for constant graph. use_runtime_constant_folding: bool = False # flag to force weight to be appened to the shared library and mmaped by the runtime # rather than embedded into the data section. Needed to support 1B+ parameter models force_mmap_weights: bool = False package: bool = False class cuda: # CUDA arch to use for CUDA template kernel compilation. # e.g. "70", "75", "80", "90", etc. # When arch is None, Inductor uses torch.cuda.get_device_capability(0). arch: Optional[str] = None # CUDA version to use for CUDA template kernel compilation. # e.g. "11.4", "12.1", etc. # When version is None, Inductor uses torch.version.cuda. version: Optional[str] = None # Optimization level for the host compiler. compile_opt_level = "-O1" # Whether to enable device LTO (link-time-optimization). enable_cuda_lto = False # Whether to keep intermediate files dring compilation. enable_ptxas_info = False # Whether to enable debug info, e.g. line number, cutlass debug info. enable_debug_info = False # Whether to use fast math. use_fast_math = False # Path to the CUTLASS repo root directory. # The default path only works under PyTorch local development environment. cutlass_dir = os.environ.get( "TORCHINDUCTOR_CUTLASS_DIR", os.path.abspath( os.path.join(os.path.dirname(torch.__file__), "../third_party/cutlass/") ), ) # Configures the maximum number of CUTLASS configs to profile in max_autotune. # By default it's None, so that all CUTLASS configs are tuned. # This is mainly used to reduce test time in CI. cutlass_max_profiling_configs: Optional[int] = None # Path to CUDA NVCC. # NVCC search order: # 1) cuda_cxx set in this config # 2) CUDACXX environment variable # 3) CUDA_HOME environment variable # 4) default system search PATH. cuda_cxx: Optional[str] = None # Minimum value of M*N*K to consider the CUTLASS backend for GEMM ops. cutlass_backend_min_gemm_size: int = 1 # enable generation of inline standalone runner in CUDA CPP generated code # which allows to compile the generated code into a standalone executable. generate_test_runner: bool = ( os.environ.get("INDUCTOR_CUDA_BACKEND_GENERATE_TEST_RUNNER_CODE", "1") == "1" ) # Keep only Cutlass op configs which contain this regular expression pattern # Set this to "warpspecialized_cooperative_epi_tma" to enable only SM90 TMA Cutlass Kernels for large GEMMs cutlass_op_allowlist_regex: Optional[str] = None # Note: Names of Cutlass ops names can be obtained by calling # op.configuration_name() on a Cutlass op instance, for example those # returned from cutlass_utils.gen_ops() or the op argument passed to # CUTLASSGemmTemplate.render(...) # Filter Cutlass configs which contain this regular expression pattern # Set this to "pingpong" to avoid numerical issues # caused by the op ordering of the "pingpong" memory access # pattern used by some Cutlass Kernels. cutlass_op_denylist_regex: Optional[str] = "pingpong" class rocm: # Offload arch list for device code compilation, e.g. ["gfx941", "gfx942"]. # If empty, the `native` arch is used arch: List[str] = [] # Enable the CK backend for CDNA2 and CDNA3 only (for now) # Processor name reference: https://llvm.org/docs/AMDGPUUsage.html#processors ck_supported_arch: List[str] = ["gfx90a", "gfx940", "gfx941", "gfx942"] # Optimization level, use to balance compilation speed and runtime performance compile_opt_level = "-O2" # Flag to keep debug information in compiled objects is_debug = False # Flag to keep intermediate files (assembly listings, preprocessed sources, etc.) save_temps = False # Flag to add `-ffast-math`` to compile flags use_fast_math = True # Flag to add `-fgpu-flush-denormals-to-zero` to compile flags flush_denormals = True # Flag to print register and LDS usage during compilation print_kernel_resource_usage = False # Path to ROCm installation, if None, use env variable ROCM_HOME rocm_home: Optional[str] = None # Path to Composable Kernel library. # Install with `pip install git+https://github.com/rocm/composable_kernel@develop`. ck_dir = os.environ.get("TORCHINDUCTOR_CK_DIR") # Number of op instance choices to trade off between runtime perf and compilation time n_max_profiling_configs: Optional[int] = None # Flag to use a short list of CK instances which perform well across a variety of shapes. # Currently RCR and F16 only use_preselected_instances: bool = False # Backend to use for CPU codegen either "cpp" or "halide" (experimental) cpu_backend = "cpp" # Backend to use for CUDA codegen either "triton" or "halide" (experimental) cuda_backend = "triton" class halide: # Base halide target to use for CPU devices cpu_target = "host" # Base halide target to use for CUDA devices gpu_target = "host-cuda" # Halide autoscheduler to use, choices are: # "Anderson2021" (gpu-only), "Li2018", "Adams2019" (cpu-only), or "Mullapudi2016" (cpu-only) scheduler_cuda = "Anderson2021" scheduler_cpu = "Adams2019" # Controls `no_asserts` flag passed to Halide target (warning: can false positive) asserts = False # Controls `debug` flag passed to Halide target debug = False # Enable (or fallback on) scan kernels such as cumsum # Halide autoschedulers struggle with these kernels scan_kernels = False # create a directory containing lots of debug information class trace: # master switch for all debugging flags below enabled = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1" # Save debug information to a temporary directory # If not specified, a temp directory will be created by system debug_dir: Optional[str] = None # Save python logger call >=logging.DEBUG debug_log = False # Save python logger call >=logging.INFO info_log = False # Save input FX graph (post decomps, pre optimization) fx_graph = True # Save FX graph after transformations fx_graph_transformed = True # Save TorchInductor IR before fusion pass ir_pre_fusion = True # Save TorchInductor IR after fusion pass ir_post_fusion = True # Copy generated code to trace dir output_code = True # SVG figure showing post-fusion graph graph_diagram = os.environ.get("INDUCTOR_POST_FUSION_SVG", "0") == "1" # SVG figure showing fx with fusion draw_orig_fx_graph = os.environ.get("INDUCTOR_ORIG_FX_SVG", "0") == "1" # We draw our fx graphs with the "record" shape attribute by default. # Sometimes, when the graph is very complex, we may hit dot errors like below: # "flat edge between adjacent nodes one of which has a record shape - # replace records with HTML-like labels" # and thus fail to generate a graph. So, let's give the user an option # to specify the shape attribute for the dot graph. For example, passing # INDUCTOR_DOT_GRAPH_SHAPE_SVG = "none" would let us generate HTML-like lables # to workaround the above failure. dot_graph_shape = os.environ.get("INDUCTOR_DOT_GRAPH_SHAPE_SVG", None) # If not None, this is the URL that saves the SVG files of the input/output # graph of each pass that changed the graph # The nodes that are being transformed in each pass will be colored in yellow # URL only supports local directory for now log_url_for_graph_xform = os.environ.get("INDUCTOR_LOG_URL_FOR_GRAPH_XFORM", None) # Store cProfile (see snakeviz to view) compile_profile = False # Upload the .tar.gz file # Needs to be overriden based on specific environment needs upload_tar: Optional[Callable[[str], None]] = None log_autotuning_results: bool = False _save_config_ignore = [ # workaround: "Can't pickle " "trace.upload_tar", "post_grad_custom_post_pass", "post_grad_custom_pre_pass", "joint_custom_pre_pass", "joint_custom_post_pass", "pre_grad_custom_pass", ] _cache_config_ignore_prefix = [ # trace functions are not relevant to config caching "trace", # uses absolute path "cuda.cutlass_dir", # not relevant "compile_threads", ] if TYPE_CHECKING: from torch.utils._config_typing import * # noqa: F401, F403 from torch.utils._config_module import install_config_module # adds patch, save_config, etc install_config_module(sys.modules[__name__])