# mypy: allow-untyped-defs import threading from contextlib import contextmanager import torch doc = """ This is used when dynamo traces torch.nn.Parameter, which normally would not trace properly with AOTAutograd. We instead create a placeholder torch.nn.Parameter before the graph, which becomes a graph arg and has no storage backing it. At the point in the graph where the parameter actually should be created we mutate this sacrificial placeholder into it. This allows gradients to flow into the parameter as if it were an input to the graph (which is the only thing we are allowed to compute gradients on). """.strip() class TracableCreateParameter(torch.autograd.Function): @staticmethod def forward(ctx, tensor, placeholder): assert not tensor.requires_grad return placeholder.set_(tensor) @staticmethod def backward(ctx, grad): return None, grad # grad flows to placeholder def tracable_create_parameter(tensor, placeholder): with torch.set_grad_enabled(placeholder.requires_grad): out = TracableCreateParameter.apply(tensor, placeholder) return out def new_parameter_placeholder(size, dtype, device, requires_grad): """Create a placeholder to be passed to the above functions""" result = torch.nn.Parameter( torch.empty(size, dtype=dtype, device=device), requires_grad=requires_grad ) # TODO(jansel): alloc followed by free is inefficient, need a way to allocate an unbacked tensor. # Allocating a zero tensor would causes assert failures in autograd. result.untyped_storage().resize_(0) return result _TLS = threading.local() @contextmanager def do_not_convert_to_tracable_parameter(): old_flag = getattr(_TLS, "convert_tracable_parameter", True) _TLS.convert_tracable_parameter = False try: yield False finally: _TLS.convert_tracable_parameter = old_flag def can_convert_to_tracable_parameter(): return getattr(_TLS, "convert_tracable_parameter", True)