# mypy: allow-untyped-defs # mypy: disable-error-code="type-arg" from datetime import timedelta from typing import Any, Generic, overload, TypeVar import torch from torch._C import Future from torch._C._autograd import ProfilerEvent from torch._C._distributed_c10d import Store from torch._C._profiler import ProfilerConfig # This module is defined in torch/csrc/distributed/rpc/init.cpp _DEFAULT_INIT_METHOD: str _DEFAULT_NUM_WORKER_THREADS: int _UNSET_RPC_TIMEOUT: float _DEFAULT_RPC_TIMEOUT_SEC: float _T = TypeVar("_T") class RpcBackendOptions: rpc_timeout: float init_method: str def __init__( self, rpc_timeout: float = ..., init_method: str = ..., ) -> None: ... class WorkerInfo: def __init__(self, name: str, worker_id: int) -> None: ... @property def name(self) -> str: ... @property def id(self) -> int: ... def __eq__(self, other: object) -> bool: ... class RpcAgent: def join(self, shutdown: bool = False, timeout: float = 0): ... def sync(self): ... def shutdown(self): ... @overload def get_worker_info(self) -> WorkerInfo: ... @overload def get_worker_info(self, workerName: str) -> WorkerInfo: ... def get_worker_infos(self) -> list[WorkerInfo]: ... def _get_device_map(self, dst: WorkerInfo) -> dict[torch.device, torch.device]: ... def get_debug_info(self) -> dict[str, str]: ... def get_metrics(self) -> dict[str, str]: ... class PyRRef(Generic[_T]): def __init__(self, value: _T, type_hint: Any = None) -> None: ... def is_owner(self) -> bool: ... def confirmed_by_owner(self) -> bool: ... def owner(self) -> WorkerInfo: ... def owner_name(self) -> str: ... def to_here(self, timeout: float = ...) -> _T: ... def local_value(self) -> Any: ... def rpc_sync(self, timeout: float = ...) -> Any: ... def rpc_async(self, timeout: float = ...) -> Any: ... def remote(self, timeout: float = ...) -> Any: ... def _serialize(self) -> tuple: ... @staticmethod def _deserialize(tp: tuple) -> PyRRef: ... def _get_type(self) -> type[_T]: ... def _get_future(self) -> Future[_T]: ... def _get_profiling_future(self) -> Future[_T]: ... def _set_profiling_future(self, profilingFuture: Future[_T]): ... class _TensorPipeRpcBackendOptionsBase(RpcBackendOptions): num_worker_threads: int device_maps: dict[str, dict[torch.device, torch.device]] devices: list[torch.device] def __init__( self, num_worker_threads: int, _transports: list | None, _channels: list | None, rpc_timeout: float = ..., init_method: str = ..., device_maps: dict[str, dict[torch.device, torch.device]] = {}, # noqa: B006 devices: list[torch.device] = [], # noqa: B006 ) -> None: ... def _set_device_map( self, to: str, device_map: dict[torch.device, torch.device], ): ... class TensorPipeAgent(RpcAgent): def __init__( self, store: Store, name: str, worker_id: int, world_size: int | None, opts: _TensorPipeRpcBackendOptionsBase, reverse_device_maps: dict[str, dict[torch.device, torch.device]], devices: list[torch.device], ) -> None: ... def join(self, shutdown: bool = False, timeout: float = 0): ... def shutdown(self): ... @overload def get_worker_info(self) -> WorkerInfo: ... @overload def get_worker_info(self, workerName: str) -> WorkerInfo: ... @overload def get_worker_info(self, id: int) -> WorkerInfo: ... def get_worker_infos(self) -> list[WorkerInfo]: ... def _get_device_map(self, dst: WorkerInfo) -> dict[torch.device, torch.device]: ... def _update_group_membership( self, worker_info: WorkerInfo, my_devices: list[torch.device], reverse_device_map: dict[str, dict[torch.device, torch.device]], is_join: bool, ): ... def _get_backend_options(self) -> _TensorPipeRpcBackendOptionsBase: ... @property def is_static_group(self) -> bool: ... @property def store(self) -> Store: ... def _is_current_rpc_agent_set() -> bool: ... def _get_current_rpc_agent() -> RpcAgent: ... def _set_and_start_rpc_agent(agent: RpcAgent): ... def _reset_current_rpc_agent(): ... def _delete_all_user_and_unforked_owner_rrefs(timeout: timedelta = ...): ... def _destroy_rref_context(ignoreRRefLeak: bool): ... def _rref_context_get_debug_info() -> dict[str, str]: ... def _cleanup_python_rpc_handler(): ... def _invoke_rpc_builtin( dst: WorkerInfo, opName: str, rpcTimeoutSeconds: float, *args: Any, **kwargs: Any, ): ... def _invoke_rpc_python_udf( dst: WorkerInfo, pickledPythonUDF: str, tensors: list[torch.Tensor], rpcTimeoutSeconds: float, isAsyncExecution: bool, ): ... def _invoke_rpc_torchscript( dstWorkerName: str, qualifiedNameStr: str, argsTuple: tuple, kwargsDict: dict, rpcTimeoutSeconds: float, isAsyncExecution: bool, ): ... def _invoke_remote_builtin( dst: WorkerInfo, opName: str, rpcTimeoutSeconds: float, *args: Any, **kwargs: Any, ): ... def _invoke_remote_python_udf( dst: WorkerInfo, pickledPythonUDF: str, tensors: list[torch.Tensor], rpcTimeoutSeconds: float, isAsyncExecution: bool, ): ... def _invoke_remote_torchscript( dstWorkerName: WorkerInfo, qualifiedNameStr: str, rpcTimeoutSeconds: float, isAsyncExecution: bool, *args: Any, **kwargs: Any, ): ... def get_rpc_timeout() -> float: ... def enable_gil_profiling(flag: bool): ... def _set_rpc_timeout(rpcTimeoutSeconds: float): ... class RemoteProfilerManager: @staticmethod def set_current_profiling_key(key: str): ... def _enable_server_process_global_profiler(new_config: ProfilerConfig): ... def _disable_server_process_global_profiler() -> list[list[list[ProfilerEvent]]]: ... def _set_profiler_node_id(default_node_id: int): ... def _enable_jit_rref_pickle(): ... def _disable_jit_rref_pickle(): ...